Step |
Hyp |
Ref |
Expression |
1 |
|
rnxrnres |
|- ran ( R |X. ( _I |` A ) ) = { <. x , y >. | E. u e. A ( u R x /\ u _I y ) } |
2 |
|
ideqg |
|- ( y e. _V -> ( u _I y <-> u = y ) ) |
3 |
2
|
elv |
|- ( u _I y <-> u = y ) |
4 |
3
|
anbi1ci |
|- ( ( u R x /\ u _I y ) <-> ( u = y /\ u R x ) ) |
5 |
4
|
rexbii |
|- ( E. u e. A ( u R x /\ u _I y ) <-> E. u e. A ( u = y /\ u R x ) ) |
6 |
5
|
opabbii |
|- { <. x , y >. | E. u e. A ( u R x /\ u _I y ) } = { <. x , y >. | E. u e. A ( u = y /\ u R x ) } |
7 |
1 6
|
eqtri |
|- ran ( R |X. ( _I |` A ) ) = { <. x , y >. | E. u e. A ( u = y /\ u R x ) } |