| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnxrn |
|- ran ( R |X. ( S |` A ) ) = { <. x , y >. | E. u ( u R x /\ u ( S |` A ) y ) } |
| 2 |
|
brres |
|- ( y e. _V -> ( u ( S |` A ) y <-> ( u e. A /\ u S y ) ) ) |
| 3 |
2
|
elv |
|- ( u ( S |` A ) y <-> ( u e. A /\ u S y ) ) |
| 4 |
3
|
anbi2i |
|- ( ( u R x /\ u ( S |` A ) y ) <-> ( u R x /\ ( u e. A /\ u S y ) ) ) |
| 5 |
|
an12 |
|- ( ( u e. A /\ ( u R x /\ u S y ) ) <-> ( u R x /\ ( u e. A /\ u S y ) ) ) |
| 6 |
4 5
|
bitr4i |
|- ( ( u R x /\ u ( S |` A ) y ) <-> ( u e. A /\ ( u R x /\ u S y ) ) ) |
| 7 |
6
|
exbii |
|- ( E. u ( u R x /\ u ( S |` A ) y ) <-> E. u ( u e. A /\ ( u R x /\ u S y ) ) ) |
| 8 |
|
df-rex |
|- ( E. u e. A ( u R x /\ u S y ) <-> E. u ( u e. A /\ ( u R x /\ u S y ) ) ) |
| 9 |
7 8
|
bitr4i |
|- ( E. u ( u R x /\ u ( S |` A ) y ) <-> E. u e. A ( u R x /\ u S y ) ) |
| 10 |
9
|
opabbii |
|- { <. x , y >. | E. u ( u R x /\ u ( S |` A ) y ) } = { <. x , y >. | E. u e. A ( u R x /\ u S y ) } |
| 11 |
1 10
|
eqtri |
|- ran ( R |X. ( S |` A ) ) = { <. x , y >. | E. u e. A ( u R x /\ u S y ) } |