Metamath Proof Explorer


Theorem rnxrncnvepres

Description: Range of a range Cartesian product with a restriction of the converse epsilon relation. (Contributed by Peter Mazsa, 6-Dec-2021)

Ref Expression
Assertion rnxrncnvepres
|- ran ( R |X. ( `' _E |` A ) ) = { <. x , y >. | E. u e. A ( y e. u /\ u R x ) }

Proof

Step Hyp Ref Expression
1 rnxrnres
 |-  ran ( R |X. ( `' _E |` A ) ) = { <. x , y >. | E. u e. A ( u R x /\ u `' _E y ) }
2 brcnvep
 |-  ( u e. _V -> ( u `' _E y <-> y e. u ) )
3 2 elv
 |-  ( u `' _E y <-> y e. u )
4 3 anbi1ci
 |-  ( ( u R x /\ u `' _E y ) <-> ( y e. u /\ u R x ) )
5 4 rexbii
 |-  ( E. u e. A ( u R x /\ u `' _E y ) <-> E. u e. A ( y e. u /\ u R x ) )
6 5 opabbii
 |-  { <. x , y >. | E. u e. A ( u R x /\ u `' _E y ) } = { <. x , y >. | E. u e. A ( y e. u /\ u R x ) }
7 1 6 eqtri
 |-  ran ( R |X. ( `' _E |` A ) ) = { <. x , y >. | E. u e. A ( y e. u /\ u R x ) }