Metamath Proof Explorer


Theorem rnxrncnvepres

Description: Range of a range Cartesian product with a restriction of the converse epsilon relation. (Contributed by Peter Mazsa, 6-Dec-2021)

Ref Expression
Assertion rnxrncnvepres ran ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑦𝑢𝑢 𝑅 𝑥 ) }

Proof

Step Hyp Ref Expression
1 rnxrnres ran ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝑥𝑢 E 𝑦 ) }
2 brcnvep ( 𝑢 ∈ V → ( 𝑢 E 𝑦𝑦𝑢 ) )
3 2 elv ( 𝑢 E 𝑦𝑦𝑢 )
4 3 anbi1ci ( ( 𝑢 𝑅 𝑥𝑢 E 𝑦 ) ↔ ( 𝑦𝑢𝑢 𝑅 𝑥 ) )
5 4 rexbii ( ∃ 𝑢𝐴 ( 𝑢 𝑅 𝑥𝑢 E 𝑦 ) ↔ ∃ 𝑢𝐴 ( 𝑦𝑢𝑢 𝑅 𝑥 ) )
6 5 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝑥𝑢 E 𝑦 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑦𝑢𝑢 𝑅 𝑥 ) }
7 1 6 eqtri ran ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑦𝑢𝑢 𝑅 𝑥 ) }