Description: Range of a range Cartesian product with a restriction of the converse epsilon relation. (Contributed by Peter Mazsa, 6-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | rnxrncnvepres | ⊢ ran ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ 𝑢 ∧ 𝑢 𝑅 𝑥 ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnxrnres | ⊢ ran ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝑥 ∧ 𝑢 ◡ E 𝑦 ) } | |
2 | brcnvep | ⊢ ( 𝑢 ∈ V → ( 𝑢 ◡ E 𝑦 ↔ 𝑦 ∈ 𝑢 ) ) | |
3 | 2 | elv | ⊢ ( 𝑢 ◡ E 𝑦 ↔ 𝑦 ∈ 𝑢 ) |
4 | 3 | anbi1ci | ⊢ ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 ◡ E 𝑦 ) ↔ ( 𝑦 ∈ 𝑢 ∧ 𝑢 𝑅 𝑥 ) ) |
5 | 4 | rexbii | ⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝑥 ∧ 𝑢 ◡ E 𝑦 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ 𝑢 ∧ 𝑢 𝑅 𝑥 ) ) |
6 | 5 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝑥 ∧ 𝑢 ◡ E 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ 𝑢 ∧ 𝑢 𝑅 𝑥 ) } |
7 | 1 6 | eqtri | ⊢ ran ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ 𝑢 ∧ 𝑢 𝑅 𝑥 ) } |