Metamath Proof Explorer


Theorem rnxrncnvepres

Description: Range of a range Cartesian product with a restriction of the converse epsilon relation. (Contributed by Peter Mazsa, 6-Dec-2021)

Ref Expression
Assertion rnxrncnvepres ran R E -1 A = x y | u A y u u R x

Proof

Step Hyp Ref Expression
1 rnxrnres ran R E -1 A = x y | u A u R x u E -1 y
2 brcnvep u V u E -1 y y u
3 2 elv u E -1 y y u
4 3 anbi1ci u R x u E -1 y y u u R x
5 4 rexbii u A u R x u E -1 y u A y u u R x
6 5 opabbii x y | u A u R x u E -1 y = x y | u A y u u R x
7 1 6 eqtri ran R E -1 A = x y | u A y u u R x