Metamath Proof Explorer


Theorem rnxrnres

Description: Range of a range Cartesian product with a restricted relation. (Contributed by Peter Mazsa, 5-Dec-2021)

Ref Expression
Assertion rnxrnres ran ( 𝑅 ⋉ ( 𝑆𝐴 ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝑥𝑢 𝑆 𝑦 ) }

Proof

Step Hyp Ref Expression
1 rnxrn ran ( 𝑅 ⋉ ( 𝑆𝐴 ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ( 𝑢 𝑅 𝑥𝑢 ( 𝑆𝐴 ) 𝑦 ) }
2 brres ( 𝑦 ∈ V → ( 𝑢 ( 𝑆𝐴 ) 𝑦 ↔ ( 𝑢𝐴𝑢 𝑆 𝑦 ) ) )
3 2 elv ( 𝑢 ( 𝑆𝐴 ) 𝑦 ↔ ( 𝑢𝐴𝑢 𝑆 𝑦 ) )
4 3 anbi2i ( ( 𝑢 𝑅 𝑥𝑢 ( 𝑆𝐴 ) 𝑦 ) ↔ ( 𝑢 𝑅 𝑥 ∧ ( 𝑢𝐴𝑢 𝑆 𝑦 ) ) )
5 an12 ( ( 𝑢𝐴 ∧ ( 𝑢 𝑅 𝑥𝑢 𝑆 𝑦 ) ) ↔ ( 𝑢 𝑅 𝑥 ∧ ( 𝑢𝐴𝑢 𝑆 𝑦 ) ) )
6 4 5 bitr4i ( ( 𝑢 𝑅 𝑥𝑢 ( 𝑆𝐴 ) 𝑦 ) ↔ ( 𝑢𝐴 ∧ ( 𝑢 𝑅 𝑥𝑢 𝑆 𝑦 ) ) )
7 6 exbii ( ∃ 𝑢 ( 𝑢 𝑅 𝑥𝑢 ( 𝑆𝐴 ) 𝑦 ) ↔ ∃ 𝑢 ( 𝑢𝐴 ∧ ( 𝑢 𝑅 𝑥𝑢 𝑆 𝑦 ) ) )
8 df-rex ( ∃ 𝑢𝐴 ( 𝑢 𝑅 𝑥𝑢 𝑆 𝑦 ) ↔ ∃ 𝑢 ( 𝑢𝐴 ∧ ( 𝑢 𝑅 𝑥𝑢 𝑆 𝑦 ) ) )
9 7 8 bitr4i ( ∃ 𝑢 ( 𝑢 𝑅 𝑥𝑢 ( 𝑆𝐴 ) 𝑦 ) ↔ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝑥𝑢 𝑆 𝑦 ) )
10 9 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ( 𝑢 𝑅 𝑥𝑢 ( 𝑆𝐴 ) 𝑦 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝑥𝑢 𝑆 𝑦 ) }
11 1 10 eqtri ran ( 𝑅 ⋉ ( 𝑆𝐴 ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝑥𝑢 𝑆 𝑦 ) }