| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnxrn |
⊢ ran ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝑦 ) } |
| 2 |
|
brres |
⊢ ( 𝑦 ∈ V → ( 𝑢 ( 𝑆 ↾ 𝐴 ) 𝑦 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑆 𝑦 ) ) ) |
| 3 |
2
|
elv |
⊢ ( 𝑢 ( 𝑆 ↾ 𝐴 ) 𝑦 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑆 𝑦 ) ) |
| 4 |
3
|
anbi2i |
⊢ ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝑦 ) ↔ ( 𝑢 𝑅 𝑥 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑆 𝑦 ) ) ) |
| 5 |
|
an12 |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑆 𝑦 ) ) ↔ ( 𝑢 𝑅 𝑥 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑆 𝑦 ) ) ) |
| 6 |
4 5
|
bitr4i |
⊢ ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝑦 ) ↔ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑆 𝑦 ) ) ) |
| 7 |
6
|
exbii |
⊢ ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝑦 ) ↔ ∃ 𝑢 ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑆 𝑦 ) ) ) |
| 8 |
|
df-rex |
⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑆 𝑦 ) ↔ ∃ 𝑢 ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑆 𝑦 ) ) ) |
| 9 |
7 8
|
bitr4i |
⊢ ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝑦 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑆 𝑦 ) ) |
| 10 |
9
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑆 𝑦 ) } |
| 11 |
1 10
|
eqtri |
⊢ ran ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑆 𝑦 ) } |