Metamath Proof Explorer


Theorem rpex

Description: The positive reals form a set. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion rpex +V

Proof

Step Hyp Ref Expression
1 eqid mulGrpfld𝑠0=mulGrpfld𝑠0
2 1 rpmsubg +SubGrpmulGrpfld𝑠0
3 2 elexi +V