Metamath Proof Explorer


Theorem rprege0

Description: A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion rprege0 A+A0A

Proof

Step Hyp Ref Expression
1 rpre A+A
2 rpge0 A+0A
3 1 2 jca A+A0A