Metamath Proof Explorer


Theorem rrxtop

Description: The topology on generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrxtop.1 J = TopOpen I
Assertion rrxtop I V J Top

Proof

Step Hyp Ref Expression
1 rrxtop.1 J = TopOpen I
2 rrxtps I V I TopSp
3 1 tpstop I TopSp J Top
4 2 3 syl I V J Top