Metamath Proof Explorer


Theorem rrxtop

Description: The topology on generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrxtop.1 J=TopOpenmsup
Assertion rrxtop IVJTop

Proof

Step Hyp Ref Expression
1 rrxtop.1 J=TopOpenmsup
2 rrxtps IVmsupTopSp
3 1 tpstop msupTopSpJTop
4 2 3 syl IVJTop