Metamath Proof Explorer


Theorem rrxtop

Description: The topology on generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrxtop.1 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) )
Assertion rrxtop ( 𝐼𝑉𝐽 ∈ Top )

Proof

Step Hyp Ref Expression
1 rrxtop.1 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) )
2 rrxtps ( 𝐼𝑉 → ( ℝ^ ‘ 𝐼 ) ∈ TopSp )
3 1 tpstop ( ( ℝ^ ‘ 𝐼 ) ∈ TopSp → 𝐽 ∈ Top )
4 2 3 syl ( 𝐼𝑉𝐽 ∈ Top )