| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrndistlt.i | ⊢ ( 𝜑  →  𝐼  ∈  Fin ) | 
						
							| 2 |  | rrndistlt.z | ⊢ ( 𝜑  →  𝐼  ≠  ∅ ) | 
						
							| 3 |  | rrndistlt.n | ⊢ 𝑁  =  ( ♯ ‘ 𝐼 ) | 
						
							| 4 |  | rrndistlt.x | ⊢ ( 𝜑  →  𝑋  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 5 |  | rrndistlt.y | ⊢ ( 𝜑  →  𝑌  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 6 |  | rrndistlt.l | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) )  <  𝐸 ) | 
						
							| 7 |  | rrndistlt.e | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 8 |  | rrndistlt.d | ⊢ 𝐷  =  ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | 
						
							| 9 |  | elmapi | ⊢ ( 𝑋  ∈  ( ℝ  ↑m  𝐼 )  →  𝑋 : 𝐼 ⟶ ℝ ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝜑  →  𝑋 : 𝐼 ⟶ ℝ ) | 
						
							| 11 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 13 | 10 12 | fssd | ⊢ ( 𝜑  →  𝑋 : 𝐼 ⟶ ℂ ) | 
						
							| 14 | 13 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝑋 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 15 |  | elmapi | ⊢ ( 𝑌  ∈  ( ℝ  ↑m  𝐼 )  →  𝑌 : 𝐼 ⟶ ℝ ) | 
						
							| 16 | 5 15 | syl | ⊢ ( 𝜑  →  𝑌 : 𝐼 ⟶ ℝ ) | 
						
							| 17 | 16 12 | fssd | ⊢ ( 𝜑  →  𝑌 : 𝐼 ⟶ ℂ ) | 
						
							| 18 | 17 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝑌 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 19 | 14 18 | subcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 20 | 19 | abscld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) )  ∈  ℝ ) | 
						
							| 21 | 20 | resqcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 22 | 7 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 23 | 22 | resqcld | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  ∈  ℝ ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝐸 ↑ 2 )  ∈  ℝ ) | 
						
							| 25 | 19 | absge0d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  0  ≤  ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ) ) | 
						
							| 26 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  𝐸  ∈  ℝ ) | 
						
							| 27 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  𝐸  ∈  ℝ+ ) | 
						
							| 28 | 27 | rpge0d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  0  ≤  𝐸 ) | 
						
							| 29 |  | lt2sq | ⊢ ( ( ( ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) )  ∈  ℝ  ∧  0  ≤  ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ) )  ∧  ( 𝐸  ∈  ℝ  ∧  0  ≤  𝐸 ) )  →  ( ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) )  <  𝐸  ↔  ( ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ) ↑ 2 )  <  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 30 | 20 25 26 28 29 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) )  <  𝐸  ↔  ( ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ) ↑ 2 )  <  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 31 | 6 30 | mpbid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ) ↑ 2 )  <  ( 𝐸 ↑ 2 ) ) | 
						
							| 32 | 1 2 21 24 31 | fsumlt | ⊢ ( 𝜑  →  Σ 𝑖  ∈  𝐼 ( ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ) ↑ 2 )  <  Σ 𝑖  ∈  𝐼 ( 𝐸 ↑ 2 ) ) | 
						
							| 33 | 10 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝑋 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 34 | 16 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝑌 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 35 | 33 34 | resubcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 36 |  | absresq | ⊢ ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) )  ∈  ℝ  →  ( ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ) ↑ 2 )  =  ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 ) ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ) ↑ 2 )  =  ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 ) ) | 
						
							| 38 | 37 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 )  =  ( ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ) ↑ 2 ) ) | 
						
							| 39 | 38 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑖  ∈  𝐼 ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 )  =  Σ 𝑖  ∈  𝐼 ( ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ) ↑ 2 ) ) | 
						
							| 40 | 11 23 | sselid | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  ∈  ℂ ) | 
						
							| 41 |  | fsumconst | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( 𝐸 ↑ 2 )  ∈  ℂ )  →  Σ 𝑖  ∈  𝐼 ( 𝐸 ↑ 2 )  =  ( ( ♯ ‘ 𝐼 )  ·  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 42 | 1 40 41 | syl2anc | ⊢ ( 𝜑  →  Σ 𝑖  ∈  𝐼 ( 𝐸 ↑ 2 )  =  ( ( ♯ ‘ 𝐼 )  ·  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 43 |  | eqcom | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐼 )  ↔  ( ♯ ‘ 𝐼 )  =  𝑁 ) | 
						
							| 44 | 3 43 | mpbi | ⊢ ( ♯ ‘ 𝐼 )  =  𝑁 | 
						
							| 45 | 44 | oveq1i | ⊢ ( ( ♯ ‘ 𝐼 )  ·  ( 𝐸 ↑ 2 ) )  =  ( 𝑁  ·  ( 𝐸 ↑ 2 ) ) | 
						
							| 46 | 45 | a1i | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐼 )  ·  ( 𝐸 ↑ 2 ) )  =  ( 𝑁  ·  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 47 | 42 46 | eqtr2d | ⊢ ( 𝜑  →  ( 𝑁  ·  ( 𝐸 ↑ 2 ) )  =  Σ 𝑖  ∈  𝐼 ( 𝐸 ↑ 2 ) ) | 
						
							| 48 | 39 47 | breq12d | ⊢ ( 𝜑  →  ( Σ 𝑖  ∈  𝐼 ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 )  <  ( 𝑁  ·  ( 𝐸 ↑ 2 ) )  ↔  Σ 𝑖  ∈  𝐼 ( ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ) ↑ 2 )  <  Σ 𝑖  ∈  𝐼 ( 𝐸 ↑ 2 ) ) ) | 
						
							| 49 | 32 48 | mpbird | ⊢ ( 𝜑  →  Σ 𝑖  ∈  𝐼 ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 )  <  ( 𝑁  ·  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 50 |  | nfv | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 51 | 35 | resqcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 52 | 50 1 51 | fsumreclf | ⊢ ( 𝜑  →  Σ 𝑖  ∈  𝐼 ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 53 | 35 | sqge0d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  0  ≤  ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 ) ) | 
						
							| 54 | 1 51 53 | fsumge0 | ⊢ ( 𝜑  →  0  ≤  Σ 𝑖  ∈  𝐼 ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 ) ) | 
						
							| 55 |  | hashcl | ⊢ ( 𝐼  ∈  Fin  →  ( ♯ ‘ 𝐼 )  ∈  ℕ0 ) | 
						
							| 56 | 1 55 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐼 )  ∈  ℕ0 ) | 
						
							| 57 | 3 56 | eqeltrid | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 58 | 57 | nn0red | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 59 | 58 23 | remulcld | ⊢ ( 𝜑  →  ( 𝑁  ·  ( 𝐸 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 60 | 57 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  𝑁 ) | 
						
							| 61 | 22 | sqge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝐸 ↑ 2 ) ) | 
						
							| 62 | 58 23 60 61 | mulge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝑁  ·  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 63 | 52 54 59 62 | sqrtltd | ⊢ ( 𝜑  →  ( Σ 𝑖  ∈  𝐼 ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 )  <  ( 𝑁  ·  ( 𝐸 ↑ 2 ) )  ↔  ( √ ‘ Σ 𝑖  ∈  𝐼 ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 ) )  <  ( √ ‘ ( 𝑁  ·  ( 𝐸 ↑ 2 ) ) ) ) ) | 
						
							| 64 | 49 63 | mpbid | ⊢ ( 𝜑  →  ( √ ‘ Σ 𝑖  ∈  𝐼 ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 ) )  <  ( √ ‘ ( 𝑁  ·  ( 𝐸 ↑ 2 ) ) ) ) | 
						
							| 65 | 8 | a1i | ⊢ ( 𝜑  →  𝐷  =  ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) ) | 
						
							| 66 |  | eqid | ⊢ ( ℝ^ ‘ 𝐼 )  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 67 |  | eqid | ⊢ ( ℝ  ↑m  𝐼 )  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 68 | 66 67 | rrxdsfi | ⊢ ( 𝐼  ∈  Fin  →  ( dist ‘ ( ℝ^ ‘ 𝐼 ) )  =  ( 𝑓  ∈  ( ℝ  ↑m  𝐼 ) ,  𝑔  ∈  ( ℝ  ↑m  𝐼 )  ↦  ( √ ‘ Σ 𝑖  ∈  𝐼 ( ( ( 𝑓 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) ) ↑ 2 ) ) ) ) | 
						
							| 69 | 1 68 | syl | ⊢ ( 𝜑  →  ( dist ‘ ( ℝ^ ‘ 𝐼 ) )  =  ( 𝑓  ∈  ( ℝ  ↑m  𝐼 ) ,  𝑔  ∈  ( ℝ  ↑m  𝐼 )  ↦  ( √ ‘ Σ 𝑖  ∈  𝐼 ( ( ( 𝑓 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) ) ↑ 2 ) ) ) ) | 
						
							| 70 | 65 69 | eqtrd | ⊢ ( 𝜑  →  𝐷  =  ( 𝑓  ∈  ( ℝ  ↑m  𝐼 ) ,  𝑔  ∈  ( ℝ  ↑m  𝐼 )  ↦  ( √ ‘ Σ 𝑖  ∈  𝐼 ( ( ( 𝑓 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) ) ↑ 2 ) ) ) ) | 
						
							| 71 |  | fveq1 | ⊢ ( 𝑓  =  𝑋  →  ( 𝑓 ‘ 𝑖 )  =  ( 𝑋 ‘ 𝑖 ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝑓  =  𝑋  ∧  𝑔  =  𝑌 )  →  ( 𝑓 ‘ 𝑖 )  =  ( 𝑋 ‘ 𝑖 ) ) | 
						
							| 73 |  | fveq1 | ⊢ ( 𝑔  =  𝑌  →  ( 𝑔 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( 𝑓  =  𝑋  ∧  𝑔  =  𝑌 )  →  ( 𝑔 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 75 | 72 74 | oveq12d | ⊢ ( ( 𝑓  =  𝑋  ∧  𝑔  =  𝑌 )  →  ( ( 𝑓 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) )  =  ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ) | 
						
							| 76 | 75 | oveq1d | ⊢ ( ( 𝑓  =  𝑋  ∧  𝑔  =  𝑌 )  →  ( ( ( 𝑓 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) ) ↑ 2 )  =  ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 ) ) | 
						
							| 77 | 76 | sumeq2sdv | ⊢ ( ( 𝑓  =  𝑋  ∧  𝑔  =  𝑌 )  →  Σ 𝑖  ∈  𝐼 ( ( ( 𝑓 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) ) ↑ 2 )  =  Σ 𝑖  ∈  𝐼 ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 ) ) | 
						
							| 78 | 77 | fveq2d | ⊢ ( ( 𝑓  =  𝑋  ∧  𝑔  =  𝑌 )  →  ( √ ‘ Σ 𝑖  ∈  𝐼 ( ( ( 𝑓 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) ) ↑ 2 ) )  =  ( √ ‘ Σ 𝑖  ∈  𝐼 ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 ) ) ) | 
						
							| 79 | 78 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑓  =  𝑋  ∧  𝑔  =  𝑌 ) )  →  ( √ ‘ Σ 𝑖  ∈  𝐼 ( ( ( 𝑓 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) ) ↑ 2 ) )  =  ( √ ‘ Σ 𝑖  ∈  𝐼 ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 ) ) ) | 
						
							| 80 | 52 54 | resqrtcld | ⊢ ( 𝜑  →  ( √ ‘ Σ 𝑖  ∈  𝐼 ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 ) )  ∈  ℝ ) | 
						
							| 81 | 70 79 4 5 80 | ovmpod | ⊢ ( 𝜑  →  ( 𝑋 𝐷 𝑌 )  =  ( √ ‘ Σ 𝑖  ∈  𝐼 ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 ) ) ) | 
						
							| 82 |  | sqrtmul | ⊢ ( ( ( 𝑁  ∈  ℝ  ∧  0  ≤  𝑁 )  ∧  ( ( 𝐸 ↑ 2 )  ∈  ℝ  ∧  0  ≤  ( 𝐸 ↑ 2 ) ) )  →  ( √ ‘ ( 𝑁  ·  ( 𝐸 ↑ 2 ) ) )  =  ( ( √ ‘ 𝑁 )  ·  ( √ ‘ ( 𝐸 ↑ 2 ) ) ) ) | 
						
							| 83 | 58 60 23 61 82 | syl22anc | ⊢ ( 𝜑  →  ( √ ‘ ( 𝑁  ·  ( 𝐸 ↑ 2 ) ) )  =  ( ( √ ‘ 𝑁 )  ·  ( √ ‘ ( 𝐸 ↑ 2 ) ) ) ) | 
						
							| 84 | 7 | rpge0d | ⊢ ( 𝜑  →  0  ≤  𝐸 ) | 
						
							| 85 | 22 84 | sqrtsqd | ⊢ ( 𝜑  →  ( √ ‘ ( 𝐸 ↑ 2 ) )  =  𝐸 ) | 
						
							| 86 | 85 | oveq2d | ⊢ ( 𝜑  →  ( ( √ ‘ 𝑁 )  ·  ( √ ‘ ( 𝐸 ↑ 2 ) ) )  =  ( ( √ ‘ 𝑁 )  ·  𝐸 ) ) | 
						
							| 87 | 83 86 | eqtr2d | ⊢ ( 𝜑  →  ( ( √ ‘ 𝑁 )  ·  𝐸 )  =  ( √ ‘ ( 𝑁  ·  ( 𝐸 ↑ 2 ) ) ) ) | 
						
							| 88 | 81 87 | breq12d | ⊢ ( 𝜑  →  ( ( 𝑋 𝐷 𝑌 )  <  ( ( √ ‘ 𝑁 )  ·  𝐸 )  ↔  ( √ ‘ Σ 𝑖  ∈  𝐼 ( ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑌 ‘ 𝑖 ) ) ↑ 2 ) )  <  ( √ ‘ ( 𝑁  ·  ( 𝐸 ↑ 2 ) ) ) ) ) | 
						
							| 89 | 64 88 | mpbird | ⊢ ( 𝜑  →  ( 𝑋 𝐷 𝑌 )  <  ( ( √ ‘ 𝑁 )  ·  𝐸 ) ) |