Description: The topology on n-dimensional Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rrxtopfi.1 | ⊢ 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) | |
Assertion | rrxtoponfi | ⊢ ( 𝐼 ∈ Fin → 𝐽 ∈ ( TopOn ‘ ( ℝ ↑m 𝐼 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxtopfi.1 | ⊢ 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) | |
2 | 1 | rrxtopon | ⊢ ( 𝐼 ∈ Fin → 𝐽 ∈ ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) |
3 | id | ⊢ ( 𝐼 ∈ Fin → 𝐼 ∈ Fin ) | |
4 | eqid | ⊢ ( ℝ^ ‘ 𝐼 ) = ( ℝ^ ‘ 𝐼 ) | |
5 | eqid | ⊢ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) | |
6 | 3 4 5 | rrxbasefi | ⊢ ( 𝐼 ∈ Fin → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( ℝ ↑m 𝐼 ) ) |
7 | 6 | fveq2d | ⊢ ( 𝐼 ∈ Fin → ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) = ( TopOn ‘ ( ℝ ↑m 𝐼 ) ) ) |
8 | 2 7 | eleqtrd | ⊢ ( 𝐼 ∈ Fin → 𝐽 ∈ ( TopOn ‘ ( ℝ ↑m 𝐼 ) ) ) |