Metamath Proof Explorer


Theorem rrxtoponfi

Description: The topology on n-dimensional Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrxtopfi.1 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) )
Assertion rrxtoponfi ( 𝐼 ∈ Fin → 𝐽 ∈ ( TopOn ‘ ( ℝ ↑m 𝐼 ) ) )

Proof

Step Hyp Ref Expression
1 rrxtopfi.1 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) )
2 1 rrxtopon ( 𝐼 ∈ Fin → 𝐽 ∈ ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) )
3 id ( 𝐼 ∈ Fin → 𝐼 ∈ Fin )
4 eqid ( ℝ^ ‘ 𝐼 ) = ( ℝ^ ‘ 𝐼 )
5 eqid ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) )
6 3 4 5 rrxbasefi ( 𝐼 ∈ Fin → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( ℝ ↑m 𝐼 ) )
7 6 fveq2d ( 𝐼 ∈ Fin → ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) = ( TopOn ‘ ( ℝ ↑m 𝐼 ) ) )
8 2 7 eleqtrd ( 𝐼 ∈ Fin → 𝐽 ∈ ( TopOn ‘ ( ℝ ↑m 𝐼 ) ) )