Description: The topology on generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rrxtopon.1 | ⊢ 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) | |
Assertion | rrxtopon | ⊢ ( 𝐼 ∈ 𝑉 → 𝐽 ∈ ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxtopon.1 | ⊢ 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) | |
2 | rrxtps | ⊢ ( 𝐼 ∈ 𝑉 → ( ℝ^ ‘ 𝐼 ) ∈ TopSp ) | |
3 | eqid | ⊢ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) | |
4 | 3 1 | istps | ⊢ ( ( ℝ^ ‘ 𝐼 ) ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) |
5 | 2 4 | sylib | ⊢ ( 𝐼 ∈ 𝑉 → 𝐽 ∈ ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) |