Metamath Proof Explorer


Theorem rrxtopon

Description: The topology on generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrxtopon.1 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) )
Assertion rrxtopon ( 𝐼𝑉𝐽 ∈ ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) )

Proof

Step Hyp Ref Expression
1 rrxtopon.1 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) )
2 rrxtps ( 𝐼𝑉 → ( ℝ^ ‘ 𝐼 ) ∈ TopSp )
3 eqid ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) )
4 3 1 istps ( ( ℝ^ ‘ 𝐼 ) ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) )
5 2 4 sylib ( 𝐼𝑉𝐽 ∈ ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) )