Description: The topology on generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rrxtopon.1 | ⊢ 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) | |
| Assertion | rrxtopon | ⊢ ( 𝐼 ∈ 𝑉 → 𝐽 ∈ ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rrxtopon.1 | ⊢ 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) | |
| 2 | rrxtps | ⊢ ( 𝐼 ∈ 𝑉 → ( ℝ^ ‘ 𝐼 ) ∈ TopSp ) | |
| 3 | eqid | ⊢ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) | |
| 4 | 3 1 | istps | ⊢ ( ( ℝ^ ‘ 𝐼 ) ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) | 
| 5 | 2 4 | sylib | ⊢ ( 𝐼 ∈ 𝑉 → 𝐽 ∈ ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) |