Metamath Proof Explorer


Theorem rrxtps

Description: Generalized Euclidean real spaces are topological spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Assertion rrxtps ( 𝐼𝑉 → ( ℝ^ ‘ 𝐼 ) ∈ TopSp )

Proof

Step Hyp Ref Expression
1 rrxngp ( 𝐼𝑉 → ( ℝ^ ‘ 𝐼 ) ∈ NrmGrp )
2 ngptps ( ( ℝ^ ‘ 𝐼 ) ∈ NrmGrp → ( ℝ^ ‘ 𝐼 ) ∈ TopSp )
3 1 2 syl ( 𝐼𝑉 → ( ℝ^ ‘ 𝐼 ) ∈ TopSp )