Metamath Proof Explorer


Theorem rrxngp

Description: Generalized Euclidean real spaces are normed groups. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Assertion rrxngp ( 𝐼𝑉 → ( ℝ^ ‘ 𝐼 ) ∈ NrmGrp )

Proof

Step Hyp Ref Expression
1 eqid ( ℝ^ ‘ 𝐼 ) = ( ℝ^ ‘ 𝐼 )
2 eqid ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) )
3 1 2 rrxcph ( 𝐼𝑉 → ( ℝ^ ‘ 𝐼 ) ∈ ℂPreHil )
4 cphngp ( ( ℝ^ ‘ 𝐼 ) ∈ ℂPreHil → ( ℝ^ ‘ 𝐼 ) ∈ NrmGrp )
5 3 4 syl ( 𝐼𝑉 → ( ℝ^ ‘ 𝐼 ) ∈ NrmGrp )