Description: Generalized Euclidean real spaces are normed groups. (Contributed by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rrxngp | ⊢ ( 𝐼 ∈ 𝑉 → ( ℝ^ ‘ 𝐼 ) ∈ NrmGrp ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | ⊢ ( ℝ^ ‘ 𝐼 ) = ( ℝ^ ‘ 𝐼 ) | |
| 2 | eqid | ⊢ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) | |
| 3 | 1 2 | rrxcph | ⊢ ( 𝐼 ∈ 𝑉 → ( ℝ^ ‘ 𝐼 ) ∈ ℂPreHil ) | 
| 4 | cphngp | ⊢ ( ( ℝ^ ‘ 𝐼 ) ∈ ℂPreHil → ( ℝ^ ‘ 𝐼 ) ∈ NrmGrp ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐼 ∈ 𝑉 → ( ℝ^ ‘ 𝐼 ) ∈ NrmGrp ) |