Description: Generalized Euclidean real spaces are normed groups. (Contributed by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rrxngp | |- ( I e. V -> ( RR^ ` I ) e. NrmGrp ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | |- ( RR^ ` I ) = ( RR^ ` I ) | |
| 2 | eqid | |- ( Base ` ( RR^ ` I ) ) = ( Base ` ( RR^ ` I ) ) | |
| 3 | 1 2 | rrxcph | |- ( I e. V -> ( RR^ ` I ) e. CPreHil ) | 
| 4 | cphngp | |- ( ( RR^ ` I ) e. CPreHil -> ( RR^ ` I ) e. NrmGrp ) | |
| 5 | 3 4 | syl | |- ( I e. V -> ( RR^ ` I ) e. NrmGrp ) |