Description: Generalized Euclidean real spaces are normed groups. (Contributed by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | rrxngp | |- ( I e. V -> ( RR^ ` I ) e. NrmGrp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( RR^ ` I ) = ( RR^ ` I ) |
|
2 | eqid | |- ( Base ` ( RR^ ` I ) ) = ( Base ` ( RR^ ` I ) ) |
|
3 | 1 2 | rrxcph | |- ( I e. V -> ( RR^ ` I ) e. CPreHil ) |
4 | cphngp | |- ( ( RR^ ` I ) e. CPreHil -> ( RR^ ` I ) e. NrmGrp ) |
|
5 | 3 4 | syl | |- ( I e. V -> ( RR^ ` I ) e. NrmGrp ) |