Description: The topology on generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rrxtopon.1 | |- J = ( TopOpen ` ( RR^ ` I ) ) | |
| Assertion | rrxtopon | |- ( I e. V -> J e. ( TopOn ` ( Base ` ( RR^ ` I ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rrxtopon.1 | |- J = ( TopOpen ` ( RR^ ` I ) ) | |
| 2 | rrxtps | |- ( I e. V -> ( RR^ ` I ) e. TopSp ) | |
| 3 | eqid | |- ( Base ` ( RR^ ` I ) ) = ( Base ` ( RR^ ` I ) ) | |
| 4 | 3 1 | istps | |- ( ( RR^ ` I ) e. TopSp <-> J e. ( TopOn ` ( Base ` ( RR^ ` I ) ) ) ) | 
| 5 | 2 4 | sylib | |- ( I e. V -> J e. ( TopOn ` ( Base ` ( RR^ ` I ) ) ) ) |