Description: The topology on generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rrxtopon.1 | |- J = ( TopOpen ` ( RR^ ` I ) ) |
|
Assertion | rrxtopon | |- ( I e. V -> J e. ( TopOn ` ( Base ` ( RR^ ` I ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxtopon.1 | |- J = ( TopOpen ` ( RR^ ` I ) ) |
|
2 | rrxtps | |- ( I e. V -> ( RR^ ` I ) e. TopSp ) |
|
3 | eqid | |- ( Base ` ( RR^ ` I ) ) = ( Base ` ( RR^ ` I ) ) |
|
4 | 3 1 | istps | |- ( ( RR^ ` I ) e. TopSp <-> J e. ( TopOn ` ( Base ` ( RR^ ` I ) ) ) ) |
5 | 2 4 | sylib | |- ( I e. V -> J e. ( TopOn ` ( Base ` ( RR^ ` I ) ) ) ) |