Metamath Proof Explorer


Theorem rrxtopon

Description: The topology on generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrxtopon.1 J=TopOpenmsup
Assertion rrxtopon IVJTopOnBasemsup

Proof

Step Hyp Ref Expression
1 rrxtopon.1 J=TopOpenmsup
2 rrxtps IVmsupTopSp
3 eqid Basemsup=Basemsup
4 3 1 istps msupTopSpJTopOnBasemsup
5 2 4 sylib IVJTopOnBasemsup