Metamath Proof Explorer


Theorem rrxunitopnfi

Description: The base set of the standard topology on the space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Assertion rrxunitopnfi ( 𝑋 ∈ Fin → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( ℝ ↑m 𝑋 ) )

Proof

Step Hyp Ref Expression
1 eqidd ( 𝑋 ∈ Fin → ( ℝ ↑m 𝑋 ) = ( ℝ ↑m 𝑋 ) )
2 eqid ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )
3 2 rrxtoponfi ( 𝑋 ∈ Fin → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( TopOn ‘ ( ℝ ↑m 𝑋 ) ) )
4 toponuni ( ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( TopOn ‘ ( ℝ ↑m 𝑋 ) ) → ( ℝ ↑m 𝑋 ) = ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) )
5 3 4 syl ( 𝑋 ∈ Fin → ( ℝ ↑m 𝑋 ) = ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) )
6 1 5 eqtr2d ( 𝑋 ∈ Fin → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( ℝ ↑m 𝑋 ) )