Description: The base set of the standard topology on the space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | rrxunitopnfi | ⊢ ( 𝑋 ∈ Fin → ∪ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( ℝ ↑m 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd | ⊢ ( 𝑋 ∈ Fin → ( ℝ ↑m 𝑋 ) = ( ℝ ↑m 𝑋 ) ) | |
2 | eqid | ⊢ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) | |
3 | 2 | rrxtoponfi | ⊢ ( 𝑋 ∈ Fin → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( TopOn ‘ ( ℝ ↑m 𝑋 ) ) ) |
4 | toponuni | ⊢ ( ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( TopOn ‘ ( ℝ ↑m 𝑋 ) ) → ( ℝ ↑m 𝑋 ) = ∪ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) | |
5 | 3 4 | syl | ⊢ ( 𝑋 ∈ Fin → ( ℝ ↑m 𝑋 ) = ∪ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
6 | 1 5 | eqtr2d | ⊢ ( 𝑋 ∈ Fin → ∪ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( ℝ ↑m 𝑋 ) ) |