Metamath Proof Explorer


Theorem rrxunitopnfi

Description: The base set of the standard topology on the space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Assertion rrxunitopnfi X Fin TopOpen X = X

Proof

Step Hyp Ref Expression
1 eqidd X Fin X = X
2 eqid TopOpen X = TopOpen X
3 2 rrxtoponfi X Fin TopOpen X TopOn X
4 toponuni TopOpen X TopOn X X = TopOpen X
5 3 4 syl X Fin X = TopOpen X
6 1 5 eqtr2d X Fin TopOpen X = X