Metamath Proof Explorer


Theorem rrxtopn0

Description: The topology of the zero-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Assertion rrxtopn0 TopOpenmsup=𝒫

Proof

Step Hyp Ref Expression
1 0fin Fin
2 eqid TopOpenmsup=TopOpenmsup
3 2 rrxtoponfi FinTopOpenmsupTopOn
4 1 3 ax-mp TopOpenmsupTopOn
5 reex V
6 mapdm0 V=
7 5 6 ax-mp =
8 7 fveq2i TopOn=TopOn
9 4 8 eleqtri TopOpenmsupTopOn
10 topsn TopOpenmsupTopOnTopOpenmsup=𝒫
11 9 10 ax-mp TopOpenmsup=𝒫