Metamath Proof Explorer


Theorem rrxtopn0

Description: The topology of the zero-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Assertion rrxtopn0 TopOpen = 𝒫

Proof

Step Hyp Ref Expression
1 0fin Fin
2 eqid TopOpen = TopOpen
3 2 rrxtoponfi Fin TopOpen TopOn
4 1 3 ax-mp TopOpen TopOn
5 reex V
6 mapdm0 V =
7 5 6 ax-mp =
8 7 fveq2i TopOn = TopOn
9 4 8 eleqtri TopOpen TopOn
10 topsn TopOpen TopOn TopOpen = 𝒫
11 9 10 ax-mp TopOpen = 𝒫