| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0fi |  |-  (/) e. Fin | 
						
							| 2 |  | eqid |  |-  ( TopOpen ` ( RR^ ` (/) ) ) = ( TopOpen ` ( RR^ ` (/) ) ) | 
						
							| 3 | 2 | rrxtoponfi |  |-  ( (/) e. Fin -> ( TopOpen ` ( RR^ ` (/) ) ) e. ( TopOn ` ( RR ^m (/) ) ) ) | 
						
							| 4 | 1 3 | ax-mp |  |-  ( TopOpen ` ( RR^ ` (/) ) ) e. ( TopOn ` ( RR ^m (/) ) ) | 
						
							| 5 |  | reex |  |-  RR e. _V | 
						
							| 6 |  | mapdm0 |  |-  ( RR e. _V -> ( RR ^m (/) ) = { (/) } ) | 
						
							| 7 | 5 6 | ax-mp |  |-  ( RR ^m (/) ) = { (/) } | 
						
							| 8 | 7 | fveq2i |  |-  ( TopOn ` ( RR ^m (/) ) ) = ( TopOn ` { (/) } ) | 
						
							| 9 | 4 8 | eleqtri |  |-  ( TopOpen ` ( RR^ ` (/) ) ) e. ( TopOn ` { (/) } ) | 
						
							| 10 |  | topsn |  |-  ( ( TopOpen ` ( RR^ ` (/) ) ) e. ( TopOn ` { (/) } ) -> ( TopOpen ` ( RR^ ` (/) ) ) = ~P { (/) } ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ( TopOpen ` ( RR^ ` (/) ) ) = ~P { (/) } |