Step |
Hyp |
Ref |
Expression |
1 |
|
0fin |
|- (/) e. Fin |
2 |
|
eqid |
|- ( TopOpen ` ( RR^ ` (/) ) ) = ( TopOpen ` ( RR^ ` (/) ) ) |
3 |
2
|
rrxtoponfi |
|- ( (/) e. Fin -> ( TopOpen ` ( RR^ ` (/) ) ) e. ( TopOn ` ( RR ^m (/) ) ) ) |
4 |
1 3
|
ax-mp |
|- ( TopOpen ` ( RR^ ` (/) ) ) e. ( TopOn ` ( RR ^m (/) ) ) |
5 |
|
reex |
|- RR e. _V |
6 |
|
mapdm0 |
|- ( RR e. _V -> ( RR ^m (/) ) = { (/) } ) |
7 |
5 6
|
ax-mp |
|- ( RR ^m (/) ) = { (/) } |
8 |
7
|
fveq2i |
|- ( TopOn ` ( RR ^m (/) ) ) = ( TopOn ` { (/) } ) |
9 |
4 8
|
eleqtri |
|- ( TopOpen ` ( RR^ ` (/) ) ) e. ( TopOn ` { (/) } ) |
10 |
|
topsn |
|- ( ( TopOpen ` ( RR^ ` (/) ) ) e. ( TopOn ` { (/) } ) -> ( TopOpen ` ( RR^ ` (/) ) ) = ~P { (/) } ) |
11 |
9 10
|
ax-mp |
|- ( TopOpen ` ( RR^ ` (/) ) ) = ~P { (/) } |