Metamath Proof Explorer


Theorem rrxtoponfi

Description: The topology on n-dimensional Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrxtopfi.1
|- J = ( TopOpen ` ( RR^ ` I ) )
Assertion rrxtoponfi
|- ( I e. Fin -> J e. ( TopOn ` ( RR ^m I ) ) )

Proof

Step Hyp Ref Expression
1 rrxtopfi.1
 |-  J = ( TopOpen ` ( RR^ ` I ) )
2 1 rrxtopon
 |-  ( I e. Fin -> J e. ( TopOn ` ( Base ` ( RR^ ` I ) ) ) )
3 id
 |-  ( I e. Fin -> I e. Fin )
4 eqid
 |-  ( RR^ ` I ) = ( RR^ ` I )
5 eqid
 |-  ( Base ` ( RR^ ` I ) ) = ( Base ` ( RR^ ` I ) )
6 3 4 5 rrxbasefi
 |-  ( I e. Fin -> ( Base ` ( RR^ ` I ) ) = ( RR ^m I ) )
7 6 fveq2d
 |-  ( I e. Fin -> ( TopOn ` ( Base ` ( RR^ ` I ) ) ) = ( TopOn ` ( RR ^m I ) ) )
8 2 7 eleqtrd
 |-  ( I e. Fin -> J e. ( TopOn ` ( RR ^m I ) ) )