Description: The topology on n-dimensional Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rrxtopfi.1 | |- J = ( TopOpen ` ( RR^ ` I ) ) |
|
Assertion | rrxtoponfi | |- ( I e. Fin -> J e. ( TopOn ` ( RR ^m I ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxtopfi.1 | |- J = ( TopOpen ` ( RR^ ` I ) ) |
|
2 | 1 | rrxtopon | |- ( I e. Fin -> J e. ( TopOn ` ( Base ` ( RR^ ` I ) ) ) ) |
3 | id | |- ( I e. Fin -> I e. Fin ) |
|
4 | eqid | |- ( RR^ ` I ) = ( RR^ ` I ) |
|
5 | eqid | |- ( Base ` ( RR^ ` I ) ) = ( Base ` ( RR^ ` I ) ) |
|
6 | 3 4 5 | rrxbasefi | |- ( I e. Fin -> ( Base ` ( RR^ ` I ) ) = ( RR ^m I ) ) |
7 | 6 | fveq2d | |- ( I e. Fin -> ( TopOn ` ( Base ` ( RR^ ` I ) ) ) = ( TopOn ` ( RR ^m I ) ) ) |
8 | 2 7 | eleqtrd | |- ( I e. Fin -> J e. ( TopOn ` ( RR ^m I ) ) ) |