Metamath Proof Explorer


Theorem rrxtoponfi

Description: The topology on n-dimensional Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrxtopfi.1 J=TopOpenmsup
Assertion rrxtoponfi IFinJTopOnI

Proof

Step Hyp Ref Expression
1 rrxtopfi.1 J=TopOpenmsup
2 1 rrxtopon IFinJTopOnBasemsup
3 id IFinIFin
4 eqid msup=msup
5 eqid Basemsup=Basemsup
6 3 4 5 rrxbasefi IFinBasemsup=I
7 6 fveq2d IFinTopOnBasemsup=TopOnI
8 2 7 eleqtrd IFinJTopOnI