Metamath Proof Explorer


Theorem rrxtoponfi

Description: The topology on n-dimensional Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrxtopfi.1 J = TopOpen I
Assertion rrxtoponfi I Fin J TopOn I

Proof

Step Hyp Ref Expression
1 rrxtopfi.1 J = TopOpen I
2 1 rrxtopon I Fin J TopOn Base I
3 id I Fin I Fin
4 eqid I = I
5 eqid Base I = Base I
6 3 4 5 rrxbasefi I Fin Base I = I
7 6 fveq2d I Fin TopOn Base I = TopOn I
8 2 7 eleqtrd I Fin J TopOn I