Description: The base set of the standard topology on the space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rrxunitopnfi | |- ( X e. Fin -> U. ( TopOpen ` ( RR^ ` X ) ) = ( RR ^m X ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqidd | |- ( X e. Fin -> ( RR ^m X ) = ( RR ^m X ) ) | |
| 2 | eqid | |- ( TopOpen ` ( RR^ ` X ) ) = ( TopOpen ` ( RR^ ` X ) ) | |
| 3 | 2 | rrxtoponfi | |- ( X e. Fin -> ( TopOpen ` ( RR^ ` X ) ) e. ( TopOn ` ( RR ^m X ) ) ) | 
| 4 | toponuni | |- ( ( TopOpen ` ( RR^ ` X ) ) e. ( TopOn ` ( RR ^m X ) ) -> ( RR ^m X ) = U. ( TopOpen ` ( RR^ ` X ) ) ) | |
| 5 | 3 4 | syl | |- ( X e. Fin -> ( RR ^m X ) = U. ( TopOpen ` ( RR^ ` X ) ) ) | 
| 6 | 1 5 | eqtr2d | |- ( X e. Fin -> U. ( TopOpen ` ( RR^ ` X ) ) = ( RR ^m X ) ) |