Metamath Proof Explorer


Theorem rrxunitopnfi

Description: The base set of the standard topology on the space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Assertion rrxunitopnfi
|- ( X e. Fin -> U. ( TopOpen ` ( RR^ ` X ) ) = ( RR ^m X ) )

Proof

Step Hyp Ref Expression
1 eqidd
 |-  ( X e. Fin -> ( RR ^m X ) = ( RR ^m X ) )
2 eqid
 |-  ( TopOpen ` ( RR^ ` X ) ) = ( TopOpen ` ( RR^ ` X ) )
3 2 rrxtoponfi
 |-  ( X e. Fin -> ( TopOpen ` ( RR^ ` X ) ) e. ( TopOn ` ( RR ^m X ) ) )
4 toponuni
 |-  ( ( TopOpen ` ( RR^ ` X ) ) e. ( TopOn ` ( RR ^m X ) ) -> ( RR ^m X ) = U. ( TopOpen ` ( RR^ ` X ) ) )
5 3 4 syl
 |-  ( X e. Fin -> ( RR ^m X ) = U. ( TopOpen ` ( RR^ ` X ) ) )
6 1 5 eqtr2d
 |-  ( X e. Fin -> U. ( TopOpen ` ( RR^ ` X ) ) = ( RR ^m X ) )