Metamath Proof Explorer


Theorem rrxtopn0

Description: The topology of the zero-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Assertion rrxtopn0 ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) = 𝒫 { ∅ }

Proof

Step Hyp Ref Expression
1 0fin ∅ ∈ Fin
2 eqid ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) = ( TopOpen ‘ ( ℝ^ ‘ ∅ ) )
3 2 rrxtoponfi ( ∅ ∈ Fin → ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( TopOn ‘ ( ℝ ↑m ∅ ) ) )
4 1 3 ax-mp ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( TopOn ‘ ( ℝ ↑m ∅ ) )
5 reex ℝ ∈ V
6 mapdm0 ( ℝ ∈ V → ( ℝ ↑m ∅ ) = { ∅ } )
7 5 6 ax-mp ( ℝ ↑m ∅ ) = { ∅ }
8 7 fveq2i ( TopOn ‘ ( ℝ ↑m ∅ ) ) = ( TopOn ‘ { ∅ } )
9 4 8 eleqtri ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( TopOn ‘ { ∅ } )
10 topsn ( ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( TopOn ‘ { ∅ } ) → ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) = 𝒫 { ∅ } )
11 9 10 ax-mp ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) = 𝒫 { ∅ }