Step |
Hyp |
Ref |
Expression |
1 |
|
0fin |
⊢ ∅ ∈ Fin |
2 |
|
eqid |
⊢ ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) = ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) |
3 |
2
|
rrxtoponfi |
⊢ ( ∅ ∈ Fin → ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( TopOn ‘ ( ℝ ↑m ∅ ) ) ) |
4 |
1 3
|
ax-mp |
⊢ ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( TopOn ‘ ( ℝ ↑m ∅ ) ) |
5 |
|
reex |
⊢ ℝ ∈ V |
6 |
|
mapdm0 |
⊢ ( ℝ ∈ V → ( ℝ ↑m ∅ ) = { ∅ } ) |
7 |
5 6
|
ax-mp |
⊢ ( ℝ ↑m ∅ ) = { ∅ } |
8 |
7
|
fveq2i |
⊢ ( TopOn ‘ ( ℝ ↑m ∅ ) ) = ( TopOn ‘ { ∅ } ) |
9 |
4 8
|
eleqtri |
⊢ ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( TopOn ‘ { ∅ } ) |
10 |
|
topsn |
⊢ ( ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( TopOn ‘ { ∅ } ) → ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) = 𝒫 { ∅ } ) |
11 |
9 10
|
ax-mp |
⊢ ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) = 𝒫 { ∅ } |