| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 2 |  | eqid | ⊢ ( TopOpen ‘ ( ℝ^ ‘ ∅ ) )  =  ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) | 
						
							| 3 | 2 | rrxtoponfi | ⊢ ( ∅  ∈  Fin  →  ( TopOpen ‘ ( ℝ^ ‘ ∅ ) )  ∈  ( TopOn ‘ ( ℝ  ↑m  ∅ ) ) ) | 
						
							| 4 | 1 3 | ax-mp | ⊢ ( TopOpen ‘ ( ℝ^ ‘ ∅ ) )  ∈  ( TopOn ‘ ( ℝ  ↑m  ∅ ) ) | 
						
							| 5 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 6 |  | mapdm0 | ⊢ ( ℝ  ∈  V  →  ( ℝ  ↑m  ∅ )  =  { ∅ } ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( ℝ  ↑m  ∅ )  =  { ∅ } | 
						
							| 8 | 7 | fveq2i | ⊢ ( TopOn ‘ ( ℝ  ↑m  ∅ ) )  =  ( TopOn ‘ { ∅ } ) | 
						
							| 9 | 4 8 | eleqtri | ⊢ ( TopOpen ‘ ( ℝ^ ‘ ∅ ) )  ∈  ( TopOn ‘ { ∅ } ) | 
						
							| 10 |  | topsn | ⊢ ( ( TopOpen ‘ ( ℝ^ ‘ ∅ ) )  ∈  ( TopOn ‘ { ∅ } )  →  ( TopOpen ‘ ( ℝ^ ‘ ∅ ) )  =  𝒫  { ∅ } ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ( TopOpen ‘ ( ℝ^ ‘ ∅ ) )  =  𝒫  { ∅ } |