| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qndenserrnbllem.i | ⊢ ( 𝜑  →  𝐼  ∈  Fin ) | 
						
							| 2 |  | qndenserrnbllem.n | ⊢ ( 𝜑  →  𝐼  ≠  ∅ ) | 
						
							| 3 |  | qndenserrnbllem.x | ⊢ ( 𝜑  →  𝑋  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 4 |  | qndenserrnbllem.d | ⊢ 𝐷  =  ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | 
						
							| 5 |  | qndenserrnbllem.e | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 6 |  | inss1 | ⊢ ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  ⊆  ℚ | 
						
							| 7 |  | qex | ⊢ ℚ  ∈  V | 
						
							| 8 |  | ssexg | ⊢ ( ( ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  ⊆  ℚ  ∧  ℚ  ∈  V )  →  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  ∈  V ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  ∈  V ) | 
						
							| 11 |  | elmapi | ⊢ ( 𝑋  ∈  ( ℝ  ↑m  𝐼 )  →  𝑋 : 𝐼 ⟶ ℝ ) | 
						
							| 12 | 3 11 | syl | ⊢ ( 𝜑  →  𝑋 : 𝐼 ⟶ ℝ ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝑋 : 𝐼 ⟶ ℝ ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝑘  ∈  𝐼 ) | 
						
							| 15 | 13 14 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝑋 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 16 | 15 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝑋 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 17 | 5 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝐸  ∈  ℝ ) | 
						
							| 19 |  | ne0i | ⊢ ( 𝑘  ∈  𝐼  →  𝐼  ≠  ∅ ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝐼  ≠  ∅ ) | 
						
							| 21 |  | hashnncl | ⊢ ( 𝐼  ∈  Fin  →  ( ( ♯ ‘ 𝐼 )  ∈  ℕ  ↔  𝐼  ≠  ∅ ) ) | 
						
							| 22 | 1 21 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐼 )  ∈  ℕ  ↔  𝐼  ≠  ∅ ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( ( ♯ ‘ 𝐼 )  ∈  ℕ  ↔  𝐼  ≠  ∅ ) ) | 
						
							| 24 | 20 23 | mpbird | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( ♯ ‘ 𝐼 )  ∈  ℕ ) | 
						
							| 25 | 24 | nnred | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( ♯ ‘ 𝐼 )  ∈  ℝ ) | 
						
							| 26 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  0  ∈  ℝ ) | 
						
							| 27 | 24 | nngt0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  0  <  ( ♯ ‘ 𝐼 ) ) | 
						
							| 28 | 26 25 27 | ltled | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  0  ≤  ( ♯ ‘ 𝐼 ) ) | 
						
							| 29 | 25 28 | resqrtcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( √ ‘ ( ♯ ‘ 𝐼 ) )  ∈  ℝ ) | 
						
							| 30 | 25 27 | elrpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( ♯ ‘ 𝐼 )  ∈  ℝ+ ) | 
						
							| 31 | 30 | sqrtgt0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  0  <  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) | 
						
							| 32 | 26 31 | gtned | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( √ ‘ ( ♯ ‘ 𝐼 ) )  ≠  0 ) | 
						
							| 33 | 18 29 32 | redivcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ∈  ℝ ) | 
						
							| 34 | 15 33 | readdcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  ∈  ℝ ) | 
						
							| 35 | 34 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  ∈  ℝ* ) | 
						
							| 36 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝐸  ∈  ℝ+ ) | 
						
							| 37 | 29 31 | elrpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( √ ‘ ( ♯ ‘ 𝐼 ) )  ∈  ℝ+ ) | 
						
							| 38 | 36 37 | rpdivcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ∈  ℝ+ ) | 
						
							| 39 | 15 38 | ltaddrpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝑋 ‘ 𝑘 )  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) | 
						
							| 40 |  | qbtwnxr | ⊢ ( ( ( 𝑋 ‘ 𝑘 )  ∈  ℝ*  ∧  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  ∈  ℝ*  ∧  ( 𝑋 ‘ 𝑘 )  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  →  ∃ 𝑞  ∈  ℚ ( ( 𝑋 ‘ 𝑘 )  <  𝑞  ∧  𝑞  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) | 
						
							| 41 | 16 35 39 40 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ∃ 𝑞  ∈  ℚ ( ( 𝑋 ‘ 𝑘 )  <  𝑞  ∧  𝑞  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) | 
						
							| 42 |  | df-rex | ⊢ ( ∃ 𝑞  ∈  ℚ ( ( 𝑋 ‘ 𝑘 )  <  𝑞  ∧  𝑞  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  ↔  ∃ 𝑞 ( 𝑞  ∈  ℚ  ∧  ( ( 𝑋 ‘ 𝑘 )  <  𝑞  ∧  𝑞  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) | 
						
							| 43 | 41 42 | sylib | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ∃ 𝑞 ( 𝑞  ∈  ℚ  ∧  ( ( 𝑋 ‘ 𝑘 )  <  𝑞  ∧  𝑞  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) | 
						
							| 44 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑞  ∈  ℚ  ∧  ( ( 𝑋 ‘ 𝑘 )  <  𝑞  ∧  𝑞  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) )  →  𝑞  ∈  ℚ ) | 
						
							| 45 | 16 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑞  ∈  ℚ  ∧  ( ( 𝑋 ‘ 𝑘 )  <  𝑞  ∧  𝑞  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) )  →  ( 𝑋 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 46 | 35 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑞  ∈  ℚ  ∧  ( ( 𝑋 ‘ 𝑘 )  <  𝑞  ∧  𝑞  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) )  →  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  ∈  ℝ* ) | 
						
							| 47 |  | qre | ⊢ ( 𝑞  ∈  ℚ  →  𝑞  ∈  ℝ ) | 
						
							| 48 | 47 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑞  ∈  ℚ  ∧  ( ( 𝑋 ‘ 𝑘 )  <  𝑞  ∧  𝑞  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) )  →  𝑞  ∈  ℝ ) | 
						
							| 49 |  | simprrl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑞  ∈  ℚ  ∧  ( ( 𝑋 ‘ 𝑘 )  <  𝑞  ∧  𝑞  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) )  →  ( 𝑋 ‘ 𝑘 )  <  𝑞 ) | 
						
							| 50 |  | simprrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑞  ∈  ℚ  ∧  ( ( 𝑋 ‘ 𝑘 )  <  𝑞  ∧  𝑞  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) )  →  𝑞  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) | 
						
							| 51 | 45 46 48 49 50 | eliood | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑞  ∈  ℚ  ∧  ( ( 𝑋 ‘ 𝑘 )  <  𝑞  ∧  𝑞  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) )  →  𝑞  ∈  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) | 
						
							| 52 | 44 51 | elind | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑞  ∈  ℚ  ∧  ( ( 𝑋 ‘ 𝑘 )  <  𝑞  ∧  𝑞  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) )  →  𝑞  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) | 
						
							| 53 | 52 | ex | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( ( 𝑞  ∈  ℚ  ∧  ( ( 𝑋 ‘ 𝑘 )  <  𝑞  ∧  𝑞  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  →  𝑞  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) | 
						
							| 54 | 53 | eximdv | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( ∃ 𝑞 ( 𝑞  ∈  ℚ  ∧  ( ( 𝑋 ‘ 𝑘 )  <  𝑞  ∧  𝑞  <  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  →  ∃ 𝑞 𝑞  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) | 
						
							| 55 | 43 54 | mpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ∃ 𝑞 𝑞  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) | 
						
							| 56 |  | n0 | ⊢ ( ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  ≠  ∅  ↔  ∃ 𝑞 𝑞  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) | 
						
							| 57 | 55 56 | sylibr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  ≠  ∅ ) | 
						
							| 58 | 1 10 57 | choicefi | ⊢ ( 𝜑  →  ∃ 𝑦 ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) | 
						
							| 59 | 6 | a1i | ⊢ ( 𝑦  Fn  𝐼  →  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  ⊆  ℚ ) | 
						
							| 60 | 59 | sseld | ⊢ ( 𝑦  Fn  𝐼  →  ( ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  →  ( 𝑦 ‘ 𝑘 )  ∈  ℚ ) ) | 
						
							| 61 | 60 | ralimdv | ⊢ ( 𝑦  Fn  𝐼  →  ( ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  →  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ℚ ) ) | 
						
							| 62 | 61 | imdistani | ⊢ ( ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) )  →  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ℚ ) ) | 
						
							| 63 |  | ffnfv | ⊢ ( 𝑦 : 𝐼 ⟶ ℚ  ↔  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ℚ ) ) | 
						
							| 64 | 62 63 | sylibr | ⊢ ( ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) )  →  𝑦 : 𝐼 ⟶ ℚ ) | 
						
							| 65 | 64 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  𝑦 : 𝐼 ⟶ ℚ ) | 
						
							| 66 | 7 | a1i | ⊢ ( 𝜑  →  ℚ  ∈  V ) | 
						
							| 67 |  | elmapg | ⊢ ( ( ℚ  ∈  V  ∧  𝐼  ∈  Fin )  →  ( 𝑦  ∈  ( ℚ  ↑m  𝐼 )  ↔  𝑦 : 𝐼 ⟶ ℚ ) ) | 
						
							| 68 | 66 1 67 | syl2anc | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( ℚ  ↑m  𝐼 )  ↔  𝑦 : 𝐼 ⟶ ℚ ) ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  ( 𝑦  ∈  ( ℚ  ↑m  𝐼 )  ↔  𝑦 : 𝐼 ⟶ ℚ ) ) | 
						
							| 70 | 65 69 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  𝑦  ∈  ( ℚ  ↑m  𝐼 ) ) | 
						
							| 71 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 72 | 47 | ssriv | ⊢ ℚ  ⊆  ℝ | 
						
							| 73 |  | mapss | ⊢ ( ( ℝ  ∈  V  ∧  ℚ  ⊆  ℝ )  →  ( ℚ  ↑m  𝐼 )  ⊆  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 74 | 71 72 73 | mp2an | ⊢ ( ℚ  ↑m  𝐼 )  ⊆  ( ℝ  ↑m  𝐼 ) | 
						
							| 75 | 74 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  ( ℚ  ↑m  𝐼 )  ⊆  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 76 | 75 70 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  𝑦  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 77 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  𝐼  ∈  Fin ) | 
						
							| 78 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  𝐼  ≠  ∅ ) | 
						
							| 79 |  | eqid | ⊢ ( ♯ ‘ 𝐼 )  =  ( ♯ ‘ 𝐼 ) | 
						
							| 80 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  𝑋  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 81 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  𝜑 ) | 
						
							| 82 |  | fveq2 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑦 ‘ 𝑘 )  =  ( 𝑦 ‘ 𝑖 ) ) | 
						
							| 83 |  | fveq2 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑋 ‘ 𝑘 )  =  ( 𝑋 ‘ 𝑖 ) ) | 
						
							| 84 | 83 | oveq1d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  =  ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) | 
						
							| 85 | 83 84 | oveq12d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  =  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) | 
						
							| 86 | 85 | ineq2d | ⊢ ( 𝑘  =  𝑖  →  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  =  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) | 
						
							| 87 | 82 86 | eleq12d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  ↔  ( 𝑦 ‘ 𝑖 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) | 
						
							| 88 | 87 | cbvralvw | ⊢ ( ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  ↔  ∀ 𝑖  ∈  𝐼 ( 𝑦 ‘ 𝑖 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) | 
						
							| 89 | 88 | biimpi | ⊢ ( ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  →  ∀ 𝑖  ∈  𝐼 ( 𝑦 ‘ 𝑖 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ∀ 𝑖  ∈  𝐼 ( 𝑦 ‘ 𝑖 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) | 
						
							| 91 |  | simpr | ⊢ ( ( ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  𝑖  ∈  𝐼 ) | 
						
							| 92 |  | rspa | ⊢ ( ( ∀ 𝑖  ∈  𝐼 ( 𝑦 ‘ 𝑖 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑦 ‘ 𝑖 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) | 
						
							| 93 | 90 91 92 | syl2anc | ⊢ ( ( ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑦 ‘ 𝑖 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) | 
						
							| 94 | 93 | adantll | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑦 ‘ 𝑖 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) | 
						
							| 95 |  | elinel2 | ⊢ ( ( 𝑦 ‘ 𝑖 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  →  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) | 
						
							| 96 | 94 95 | syl | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) | 
						
							| 97 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  𝑖  ∈  𝐼 ) | 
						
							| 98 | 12 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝑋 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 99 | 98 | 3adant2 | ⊢ ( ( 𝜑  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑋 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 100 |  | simp2 | ⊢ ( ( 𝜑  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) | 
						
							| 101 | 100 | elioored | ⊢ ( ( 𝜑  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑦 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 102 | 99 | rexrd | ⊢ ( ( 𝜑  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑋 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 103 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  𝐸  ∈  ℝ ) | 
						
							| 104 | 2 22 | mpbird | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐼 )  ∈  ℕ ) | 
						
							| 105 | 104 | nnred | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐼 )  ∈  ℝ ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( ♯ ‘ 𝐼 )  ∈  ℝ ) | 
						
							| 107 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 108 | 104 | nngt0d | ⊢ ( 𝜑  →  0  <  ( ♯ ‘ 𝐼 ) ) | 
						
							| 109 | 107 105 108 | ltled | ⊢ ( 𝜑  →  0  ≤  ( ♯ ‘ 𝐼 ) ) | 
						
							| 110 | 109 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  0  ≤  ( ♯ ‘ 𝐼 ) ) | 
						
							| 111 | 106 110 | resqrtcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( √ ‘ ( ♯ ‘ 𝐼 ) )  ∈  ℝ ) | 
						
							| 112 |  | sqrtgt0 | ⊢ ( ( ( ♯ ‘ 𝐼 )  ∈  ℝ  ∧  0  <  ( ♯ ‘ 𝐼 ) )  →  0  <  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) | 
						
							| 113 | 105 108 112 | syl2anc | ⊢ ( 𝜑  →  0  <  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) | 
						
							| 114 | 107 113 | gtned | ⊢ ( 𝜑  →  ( √ ‘ ( ♯ ‘ 𝐼 ) )  ≠  0 ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( √ ‘ ( ♯ ‘ 𝐼 ) )  ≠  0 ) | 
						
							| 116 | 103 111 115 | redivcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ∈  ℝ ) | 
						
							| 117 | 98 116 | readdcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  ∈  ℝ ) | 
						
							| 118 | 117 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  ∈  ℝ* ) | 
						
							| 119 | 118 | 3adant2 | ⊢ ( ( 𝜑  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  ∈  ℝ* ) | 
						
							| 120 |  | ioogtlb | ⊢ ( ( ( 𝑋 ‘ 𝑖 )  ∈  ℝ*  ∧  ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  ∈  ℝ*  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  →  ( 𝑋 ‘ 𝑖 )  <  ( 𝑦 ‘ 𝑖 ) ) | 
						
							| 121 | 102 119 100 120 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑋 ‘ 𝑖 )  <  ( 𝑦 ‘ 𝑖 ) ) | 
						
							| 122 | 99 101 121 | ltled | ⊢ ( ( 𝜑  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑋 ‘ 𝑖 )  ≤  ( 𝑦 ‘ 𝑖 ) ) | 
						
							| 123 | 99 101 122 | abssuble0d | ⊢ ( ( 𝜑  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) )  =  ( ( 𝑦 ‘ 𝑖 )  −  ( 𝑋 ‘ 𝑖 ) ) ) | 
						
							| 124 | 117 | 3adant2 | ⊢ ( ( 𝜑  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  ∈  ℝ ) | 
						
							| 125 |  | iooltub | ⊢ ( ( ( 𝑋 ‘ 𝑖 )  ∈  ℝ*  ∧  ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  ∈  ℝ*  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )  →  ( 𝑦 ‘ 𝑖 )  <  ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) | 
						
							| 126 | 102 119 100 125 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑦 ‘ 𝑖 )  <  ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) | 
						
							| 127 | 101 124 99 126 | ltsub1dd | ⊢ ( ( 𝜑  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝑦 ‘ 𝑖 )  −  ( 𝑋 ‘ 𝑖 ) )  <  ( ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  −  ( 𝑋 ‘ 𝑖 ) ) ) | 
						
							| 128 | 99 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑋 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 129 | 105 109 | resqrtcld | ⊢ ( 𝜑  →  ( √ ‘ ( ♯ ‘ 𝐼 ) )  ∈  ℝ ) | 
						
							| 130 | 17 129 114 | redivcld | ⊢ ( 𝜑  →  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ∈  ℝ ) | 
						
							| 131 | 130 | recnd | ⊢ ( 𝜑  →  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ∈  ℂ ) | 
						
							| 132 | 131 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ∈  ℂ ) | 
						
							| 133 | 128 132 | pncan2d | ⊢ ( ( 𝜑  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  −  ( 𝑋 ‘ 𝑖 ) )  =  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) | 
						
							| 134 | 127 133 | breqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝑦 ‘ 𝑖 )  −  ( 𝑋 ‘ 𝑖 ) )  <  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) | 
						
							| 135 | 123 134 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( 𝑦 ‘ 𝑖 )  ∈  ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) )  <  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) | 
						
							| 136 | 81 96 97 135 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) )  <  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) | 
						
							| 137 | 136 | adantlrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  ∧  𝑖  ∈  𝐼 )  →  ( abs ‘ ( ( 𝑋 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) )  <  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) | 
						
							| 138 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  𝐸  ∈  ℝ+ ) | 
						
							| 139 | 105 108 | elrpd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐼 )  ∈  ℝ+ ) | 
						
							| 140 | 139 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  ( ♯ ‘ 𝐼 )  ∈  ℝ+ ) | 
						
							| 141 | 140 | rpsqrtcld | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  ( √ ‘ ( ♯ ‘ 𝐼 ) )  ∈  ℝ+ ) | 
						
							| 142 | 138 141 | rpdivcld | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ∈  ℝ+ ) | 
						
							| 143 | 77 78 79 80 76 137 142 4 | rrndistlt | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  ( 𝑋 𝐷 𝑦 )  <  ( ( √ ‘ ( ♯ ‘ 𝐼 ) )  ·  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) | 
						
							| 144 | 138 | rpcnd | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  𝐸  ∈  ℂ ) | 
						
							| 145 | 140 | rpcnd | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  ( ♯ ‘ 𝐼 )  ∈  ℂ ) | 
						
							| 146 | 145 | sqrtcld | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  ( √ ‘ ( ♯ ‘ 𝐼 ) )  ∈  ℂ ) | 
						
							| 147 | 141 | rpne0d | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  ( √ ‘ ( ♯ ‘ 𝐼 ) )  ≠  0 ) | 
						
							| 148 | 144 146 147 | divcan2d | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  ( ( √ ‘ ( ♯ ‘ 𝐼 ) )  ·  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  =  𝐸 ) | 
						
							| 149 | 143 148 | breqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  ( 𝑋 𝐷 𝑦 )  <  𝐸 ) | 
						
							| 150 | 76 149 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  ( 𝑦  ∈  ( ℝ  ↑m  𝐼 )  ∧  ( 𝑋 𝐷 𝑦 )  <  𝐸 ) ) | 
						
							| 151 | 4 | rrxmetfi | ⊢ ( 𝐼  ∈  Fin  →  𝐷  ∈  ( Met ‘ ( ℝ  ↑m  𝐼 ) ) ) | 
						
							| 152 | 1 151 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ ( ℝ  ↑m  𝐼 ) ) ) | 
						
							| 153 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ ( ℝ  ↑m  𝐼 ) )  →  𝐷  ∈  ( ∞Met ‘ ( ℝ  ↑m  𝐼 ) ) ) | 
						
							| 154 | 152 153 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ ( ℝ  ↑m  𝐼 ) ) ) | 
						
							| 155 | 17 | rexrd | ⊢ ( 𝜑  →  𝐸  ∈  ℝ* ) | 
						
							| 156 |  | elbl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ ( ℝ  ↑m  𝐼 ) )  ∧  𝑋  ∈  ( ℝ  ↑m  𝐼 )  ∧  𝐸  ∈  ℝ* )  →  ( 𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 )  ↔  ( 𝑦  ∈  ( ℝ  ↑m  𝐼 )  ∧  ( 𝑋 𝐷 𝑦 )  <  𝐸 ) ) ) | 
						
							| 157 | 154 3 155 156 | syl3anc | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 )  ↔  ( 𝑦  ∈  ( ℝ  ↑m  𝐼 )  ∧  ( 𝑋 𝐷 𝑦 )  <  𝐸 ) ) ) | 
						
							| 158 | 157 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  ( 𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 )  ↔  ( 𝑦  ∈  ( ℝ  ↑m  𝐼 )  ∧  ( 𝑋 𝐷 𝑦 )  <  𝐸 ) ) ) | 
						
							| 159 | 150 158 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) | 
						
							| 160 | 70 159 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) )  →  ( 𝑦  ∈  ( ℚ  ↑m  𝐼 )  ∧  𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) | 
						
							| 161 | 160 | ex | ⊢ ( 𝜑  →  ( ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) )  →  ( 𝑦  ∈  ( ℚ  ↑m  𝐼 )  ∧  𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) ) | 
						
							| 162 | 161 | eximdv | ⊢ ( 𝜑  →  ( ∃ 𝑦 ( 𝑦  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑦 ‘ 𝑘 )  ∈  ( ℚ  ∩  ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 )  +  ( 𝐸  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) )  →  ∃ 𝑦 ( 𝑦  ∈  ( ℚ  ↑m  𝐼 )  ∧  𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) ) | 
						
							| 163 | 58 162 | mpd | ⊢ ( 𝜑  →  ∃ 𝑦 ( 𝑦  ∈  ( ℚ  ↑m  𝐼 )  ∧  𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) | 
						
							| 164 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 )  ↔  ∃ 𝑦 ( 𝑦  ∈  ( ℚ  ↑m  𝐼 )  ∧  𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) | 
						
							| 165 | 163 164 | sylibr | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |