Step |
Hyp |
Ref |
Expression |
1 |
|
qndenserrnbllem.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
2 |
|
qndenserrnbllem.n |
⊢ ( 𝜑 → 𝐼 ≠ ∅ ) |
3 |
|
qndenserrnbllem.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ℝ ↑m 𝐼 ) ) |
4 |
|
qndenserrnbllem.d |
⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) |
5 |
|
qndenserrnbllem.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
6 |
|
inss1 |
⊢ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ⊆ ℚ |
7 |
|
qex |
⊢ ℚ ∈ V |
8 |
|
ssexg |
⊢ ( ( ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ⊆ ℚ ∧ ℚ ∈ V ) → ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ∈ V ) |
9 |
6 7 8
|
mp2an |
⊢ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ∈ V |
10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ∈ V ) |
11 |
|
elmapi |
⊢ ( 𝑋 ∈ ( ℝ ↑m 𝐼 ) → 𝑋 : 𝐼 ⟶ ℝ ) |
12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝑋 : 𝐼 ⟶ ℝ ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝑋 : 𝐼 ⟶ ℝ ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝑘 ∈ 𝐼 ) |
15 |
13 14
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑘 ) ∈ ℝ ) |
16 |
15
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑘 ) ∈ ℝ* ) |
17 |
5
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐸 ∈ ℝ ) |
19 |
|
ne0i |
⊢ ( 𝑘 ∈ 𝐼 → 𝐼 ≠ ∅ ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐼 ≠ ∅ ) |
21 |
|
hashnncl |
⊢ ( 𝐼 ∈ Fin → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
22 |
1 21
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
24 |
20 23
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ♯ ‘ 𝐼 ) ∈ ℕ ) |
25 |
24
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ♯ ‘ 𝐼 ) ∈ ℝ ) |
26 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 0 ∈ ℝ ) |
27 |
24
|
nngt0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 0 < ( ♯ ‘ 𝐼 ) ) |
28 |
26 25 27
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 0 ≤ ( ♯ ‘ 𝐼 ) ) |
29 |
25 28
|
resqrtcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ ) |
30 |
25 27
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ♯ ‘ 𝐼 ) ∈ ℝ+ ) |
31 |
30
|
sqrtgt0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 0 < ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) |
32 |
26 31
|
gtned |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ≠ 0 ) |
33 |
18 29 32
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ ) |
34 |
15 33
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ ) |
35 |
34
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ* ) |
36 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐸 ∈ ℝ+ ) |
37 |
29 31
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ+ ) |
38 |
36 37
|
rpdivcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
39 |
15 38
|
ltaddrpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑘 ) < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
40 |
|
qbtwnxr |
⊢ ( ( ( 𝑋 ‘ 𝑘 ) ∈ ℝ* ∧ ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ* ∧ ( 𝑋 ‘ 𝑘 ) < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) → ∃ 𝑞 ∈ ℚ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) |
41 |
16 35 39 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ∃ 𝑞 ∈ ℚ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) |
42 |
|
df-rex |
⊢ ( ∃ 𝑞 ∈ ℚ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ↔ ∃ 𝑞 ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
43 |
41 42
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ∃ 𝑞 ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
44 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → 𝑞 ∈ ℚ ) |
45 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → ( 𝑋 ‘ 𝑘 ) ∈ ℝ* ) |
46 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ* ) |
47 |
|
qre |
⊢ ( 𝑞 ∈ ℚ → 𝑞 ∈ ℝ ) |
48 |
47
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → 𝑞 ∈ ℝ ) |
49 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → ( 𝑋 ‘ 𝑘 ) < 𝑞 ) |
50 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
51 |
45 46 48 49 50
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → 𝑞 ∈ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) |
52 |
44 51
|
elind |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → 𝑞 ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
53 |
52
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → 𝑞 ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) |
54 |
53
|
eximdv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ∃ 𝑞 ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → ∃ 𝑞 𝑞 ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) |
55 |
43 54
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ∃ 𝑞 𝑞 ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
56 |
|
n0 |
⊢ ( ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ≠ ∅ ↔ ∃ 𝑞 𝑞 ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
57 |
55 56
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ≠ ∅ ) |
58 |
1 10 57
|
choicefi |
⊢ ( 𝜑 → ∃ 𝑦 ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) |
59 |
6
|
a1i |
⊢ ( 𝑦 Fn 𝐼 → ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ⊆ ℚ ) |
60 |
59
|
sseld |
⊢ ( 𝑦 Fn 𝐼 → ( ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → ( 𝑦 ‘ 𝑘 ) ∈ ℚ ) ) |
61 |
60
|
ralimdv |
⊢ ( 𝑦 Fn 𝐼 → ( ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ℚ ) ) |
62 |
61
|
imdistani |
⊢ ( ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ℚ ) ) |
63 |
|
ffnfv |
⊢ ( 𝑦 : 𝐼 ⟶ ℚ ↔ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ℚ ) ) |
64 |
62 63
|
sylibr |
⊢ ( ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → 𝑦 : 𝐼 ⟶ ℚ ) |
65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝑦 : 𝐼 ⟶ ℚ ) |
66 |
7
|
a1i |
⊢ ( 𝜑 → ℚ ∈ V ) |
67 |
|
elmapg |
⊢ ( ( ℚ ∈ V ∧ 𝐼 ∈ Fin ) → ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ↔ 𝑦 : 𝐼 ⟶ ℚ ) ) |
68 |
66 1 67
|
syl2anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ↔ 𝑦 : 𝐼 ⟶ ℚ ) ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ↔ 𝑦 : 𝐼 ⟶ ℚ ) ) |
70 |
65 69
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝑦 ∈ ( ℚ ↑m 𝐼 ) ) |
71 |
|
reex |
⊢ ℝ ∈ V |
72 |
47
|
ssriv |
⊢ ℚ ⊆ ℝ |
73 |
|
mapss |
⊢ ( ( ℝ ∈ V ∧ ℚ ⊆ ℝ ) → ( ℚ ↑m 𝐼 ) ⊆ ( ℝ ↑m 𝐼 ) ) |
74 |
71 72 73
|
mp2an |
⊢ ( ℚ ↑m 𝐼 ) ⊆ ( ℝ ↑m 𝐼 ) |
75 |
74
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( ℚ ↑m 𝐼 ) ⊆ ( ℝ ↑m 𝐼 ) ) |
76 |
75 70
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝑦 ∈ ( ℝ ↑m 𝐼 ) ) |
77 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝐼 ∈ Fin ) |
78 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝐼 ≠ ∅ ) |
79 |
|
eqid |
⊢ ( ♯ ‘ 𝐼 ) = ( ♯ ‘ 𝐼 ) |
80 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝑋 ∈ ( ℝ ↑m 𝐼 ) ) |
81 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → 𝜑 ) |
82 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑦 ‘ 𝑘 ) = ( 𝑦 ‘ 𝑖 ) ) |
83 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑋 ‘ 𝑘 ) = ( 𝑋 ‘ 𝑖 ) ) |
84 |
83
|
oveq1d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) = ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
85 |
83 84
|
oveq12d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) = ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) |
86 |
85
|
ineq2d |
⊢ ( 𝑘 = 𝑖 → ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) = ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
87 |
82 86
|
eleq12d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ↔ ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) |
88 |
87
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
89 |
88
|
biimpi |
⊢ ( ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → ∀ 𝑖 ∈ 𝐼 ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
90 |
89
|
adantr |
⊢ ( ( ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ∀ 𝑖 ∈ 𝐼 ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
91 |
|
simpr |
⊢ ( ( ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) |
92 |
|
rspa |
⊢ ( ( ∀ 𝑖 ∈ 𝐼 ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
93 |
90 91 92
|
syl2anc |
⊢ ( ( ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
94 |
93
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
95 |
|
elinel2 |
⊢ ( ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) |
96 |
94 95
|
syl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) |
97 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) |
98 |
12
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑖 ) ∈ ℝ ) |
99 |
98
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑖 ) ∈ ℝ ) |
100 |
|
simp2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) |
101 |
100
|
elioored |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑖 ) ∈ ℝ ) |
102 |
99
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑖 ) ∈ ℝ* ) |
103 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝐸 ∈ ℝ ) |
104 |
2 22
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℕ ) |
105 |
104
|
nnred |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℝ ) |
106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ♯ ‘ 𝐼 ) ∈ ℝ ) |
107 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
108 |
104
|
nngt0d |
⊢ ( 𝜑 → 0 < ( ♯ ‘ 𝐼 ) ) |
109 |
107 105 108
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( ♯ ‘ 𝐼 ) ) |
110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 0 ≤ ( ♯ ‘ 𝐼 ) ) |
111 |
106 110
|
resqrtcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ ) |
112 |
|
sqrtgt0 |
⊢ ( ( ( ♯ ‘ 𝐼 ) ∈ ℝ ∧ 0 < ( ♯ ‘ 𝐼 ) ) → 0 < ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) |
113 |
105 108 112
|
syl2anc |
⊢ ( 𝜑 → 0 < ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) |
114 |
107 113
|
gtned |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ≠ 0 ) |
115 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ≠ 0 ) |
116 |
103 111 115
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ ) |
117 |
98 116
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ ) |
118 |
117
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ* ) |
119 |
118
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ* ) |
120 |
|
ioogtlb |
⊢ ( ( ( 𝑋 ‘ 𝑖 ) ∈ ℝ* ∧ ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ* ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → ( 𝑋 ‘ 𝑖 ) < ( 𝑦 ‘ 𝑖 ) ) |
121 |
102 119 100 120
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑖 ) < ( 𝑦 ‘ 𝑖 ) ) |
122 |
99 101 121
|
ltled |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑖 ) ≤ ( 𝑦 ‘ 𝑖 ) ) |
123 |
99 101 122
|
abssuble0d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( abs ‘ ( ( 𝑋 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ) = ( ( 𝑦 ‘ 𝑖 ) − ( 𝑋 ‘ 𝑖 ) ) ) |
124 |
117
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ ) |
125 |
|
iooltub |
⊢ ( ( ( 𝑋 ‘ 𝑖 ) ∈ ℝ* ∧ ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ* ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → ( 𝑦 ‘ 𝑖 ) < ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
126 |
102 119 100 125
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑖 ) < ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
127 |
101 124 99 126
|
ltsub1dd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ‘ 𝑖 ) − ( 𝑋 ‘ 𝑖 ) ) < ( ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) − ( 𝑋 ‘ 𝑖 ) ) ) |
128 |
99
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑖 ) ∈ ℂ ) |
129 |
105 109
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ ) |
130 |
17 129 114
|
redivcld |
⊢ ( 𝜑 → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ ) |
131 |
130
|
recnd |
⊢ ( 𝜑 → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℂ ) |
132 |
131
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℂ ) |
133 |
128 132
|
pncan2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) − ( 𝑋 ‘ 𝑖 ) ) = ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
134 |
127 133
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ‘ 𝑖 ) − ( 𝑋 ‘ 𝑖 ) ) < ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
135 |
123 134
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( abs ‘ ( ( 𝑋 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ) < ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
136 |
81 96 97 135
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( abs ‘ ( ( 𝑋 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ) < ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
137 |
136
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( abs ‘ ( ( 𝑋 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ) < ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
138 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝐸 ∈ ℝ+ ) |
139 |
105 108
|
elrpd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℝ+ ) |
140 |
139
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( ♯ ‘ 𝐼 ) ∈ ℝ+ ) |
141 |
140
|
rpsqrtcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ+ ) |
142 |
138 141
|
rpdivcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
143 |
77 78 79 80 76 137 142 4
|
rrndistlt |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( 𝑋 𝐷 𝑦 ) < ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
144 |
138
|
rpcnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝐸 ∈ ℂ ) |
145 |
140
|
rpcnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( ♯ ‘ 𝐼 ) ∈ ℂ ) |
146 |
145
|
sqrtcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℂ ) |
147 |
141
|
rpne0d |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ≠ 0 ) |
148 |
144 146 147
|
divcan2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) = 𝐸 ) |
149 |
143 148
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( 𝑋 𝐷 𝑦 ) < 𝐸 ) |
150 |
76 149
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( 𝑦 ∈ ( ℝ ↑m 𝐼 ) ∧ ( 𝑋 𝐷 𝑦 ) < 𝐸 ) ) |
151 |
4
|
rrxmetfi |
⊢ ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
152 |
1 151
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
153 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
154 |
152 153
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
155 |
17
|
rexrd |
⊢ ( 𝜑 → 𝐸 ∈ ℝ* ) |
156 |
|
elbl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝐼 ) ) ∧ 𝑋 ∈ ( ℝ ↑m 𝐼 ) ∧ 𝐸 ∈ ℝ* ) → ( 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ↔ ( 𝑦 ∈ ( ℝ ↑m 𝐼 ) ∧ ( 𝑋 𝐷 𝑦 ) < 𝐸 ) ) ) |
157 |
154 3 155 156
|
syl3anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ↔ ( 𝑦 ∈ ( ℝ ↑m 𝐼 ) ∧ ( 𝑋 𝐷 𝑦 ) < 𝐸 ) ) ) |
158 |
157
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ↔ ( 𝑦 ∈ ( ℝ ↑m 𝐼 ) ∧ ( 𝑋 𝐷 𝑦 ) < 𝐸 ) ) ) |
159 |
150 158
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |
160 |
70 159
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) |
161 |
160
|
ex |
⊢ ( 𝜑 → ( ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) ) |
162 |
161
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → ∃ 𝑦 ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) ) |
163 |
58 162
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) |
164 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) |
165 |
163 164
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |