| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qndenserrnbllem.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 2 |
|
qndenserrnbllem.n |
⊢ ( 𝜑 → 𝐼 ≠ ∅ ) |
| 3 |
|
qndenserrnbllem.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ℝ ↑m 𝐼 ) ) |
| 4 |
|
qndenserrnbllem.d |
⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) |
| 5 |
|
qndenserrnbllem.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 6 |
|
inss1 |
⊢ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ⊆ ℚ |
| 7 |
|
qex |
⊢ ℚ ∈ V |
| 8 |
|
ssexg |
⊢ ( ( ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ⊆ ℚ ∧ ℚ ∈ V ) → ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ∈ V ) |
| 9 |
6 7 8
|
mp2an |
⊢ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ∈ V |
| 10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ∈ V ) |
| 11 |
|
elmapi |
⊢ ( 𝑋 ∈ ( ℝ ↑m 𝐼 ) → 𝑋 : 𝐼 ⟶ ℝ ) |
| 12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝑋 : 𝐼 ⟶ ℝ ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝑋 : 𝐼 ⟶ ℝ ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝑘 ∈ 𝐼 ) |
| 15 |
13 14
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑘 ) ∈ ℝ ) |
| 16 |
15
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑘 ) ∈ ℝ* ) |
| 17 |
5
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐸 ∈ ℝ ) |
| 19 |
|
ne0i |
⊢ ( 𝑘 ∈ 𝐼 → 𝐼 ≠ ∅ ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐼 ≠ ∅ ) |
| 21 |
|
hashnncl |
⊢ ( 𝐼 ∈ Fin → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
| 22 |
1 21
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
| 24 |
20 23
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ♯ ‘ 𝐼 ) ∈ ℕ ) |
| 25 |
24
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ♯ ‘ 𝐼 ) ∈ ℝ ) |
| 26 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 0 ∈ ℝ ) |
| 27 |
24
|
nngt0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 0 < ( ♯ ‘ 𝐼 ) ) |
| 28 |
26 25 27
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 0 ≤ ( ♯ ‘ 𝐼 ) ) |
| 29 |
25 28
|
resqrtcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ ) |
| 30 |
25 27
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ♯ ‘ 𝐼 ) ∈ ℝ+ ) |
| 31 |
30
|
sqrtgt0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 0 < ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) |
| 32 |
26 31
|
gtned |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ≠ 0 ) |
| 33 |
18 29 32
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ ) |
| 34 |
15 33
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ ) |
| 35 |
34
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ* ) |
| 36 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐸 ∈ ℝ+ ) |
| 37 |
29 31
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ+ ) |
| 38 |
36 37
|
rpdivcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
| 39 |
15 38
|
ltaddrpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑘 ) < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 40 |
|
qbtwnxr |
⊢ ( ( ( 𝑋 ‘ 𝑘 ) ∈ ℝ* ∧ ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ* ∧ ( 𝑋 ‘ 𝑘 ) < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) → ∃ 𝑞 ∈ ℚ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) |
| 41 |
16 35 39 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ∃ 𝑞 ∈ ℚ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) |
| 42 |
|
df-rex |
⊢ ( ∃ 𝑞 ∈ ℚ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ↔ ∃ 𝑞 ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
| 43 |
41 42
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ∃ 𝑞 ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
| 44 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → 𝑞 ∈ ℚ ) |
| 45 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → ( 𝑋 ‘ 𝑘 ) ∈ ℝ* ) |
| 46 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ* ) |
| 47 |
|
qre |
⊢ ( 𝑞 ∈ ℚ → 𝑞 ∈ ℝ ) |
| 48 |
47
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → 𝑞 ∈ ℝ ) |
| 49 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → ( 𝑋 ‘ 𝑘 ) < 𝑞 ) |
| 50 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 51 |
45 46 48 49 50
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → 𝑞 ∈ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) |
| 52 |
44 51
|
elind |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → 𝑞 ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
| 53 |
52
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → 𝑞 ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) |
| 54 |
53
|
eximdv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ∃ 𝑞 ( 𝑞 ∈ ℚ ∧ ( ( 𝑋 ‘ 𝑘 ) < 𝑞 ∧ 𝑞 < ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → ∃ 𝑞 𝑞 ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) |
| 55 |
43 54
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ∃ 𝑞 𝑞 ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
| 56 |
|
n0 |
⊢ ( ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ≠ ∅ ↔ ∃ 𝑞 𝑞 ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
| 57 |
55 56
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ≠ ∅ ) |
| 58 |
1 10 57
|
choicefi |
⊢ ( 𝜑 → ∃ 𝑦 ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) |
| 59 |
6
|
a1i |
⊢ ( 𝑦 Fn 𝐼 → ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ⊆ ℚ ) |
| 60 |
59
|
sseld |
⊢ ( 𝑦 Fn 𝐼 → ( ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → ( 𝑦 ‘ 𝑘 ) ∈ ℚ ) ) |
| 61 |
60
|
ralimdv |
⊢ ( 𝑦 Fn 𝐼 → ( ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ℚ ) ) |
| 62 |
61
|
imdistani |
⊢ ( ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ℚ ) ) |
| 63 |
|
ffnfv |
⊢ ( 𝑦 : 𝐼 ⟶ ℚ ↔ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ℚ ) ) |
| 64 |
62 63
|
sylibr |
⊢ ( ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → 𝑦 : 𝐼 ⟶ ℚ ) |
| 65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝑦 : 𝐼 ⟶ ℚ ) |
| 66 |
7
|
a1i |
⊢ ( 𝜑 → ℚ ∈ V ) |
| 67 |
|
elmapg |
⊢ ( ( ℚ ∈ V ∧ 𝐼 ∈ Fin ) → ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ↔ 𝑦 : 𝐼 ⟶ ℚ ) ) |
| 68 |
66 1 67
|
syl2anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ↔ 𝑦 : 𝐼 ⟶ ℚ ) ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ↔ 𝑦 : 𝐼 ⟶ ℚ ) ) |
| 70 |
65 69
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝑦 ∈ ( ℚ ↑m 𝐼 ) ) |
| 71 |
|
reex |
⊢ ℝ ∈ V |
| 72 |
47
|
ssriv |
⊢ ℚ ⊆ ℝ |
| 73 |
|
mapss |
⊢ ( ( ℝ ∈ V ∧ ℚ ⊆ ℝ ) → ( ℚ ↑m 𝐼 ) ⊆ ( ℝ ↑m 𝐼 ) ) |
| 74 |
71 72 73
|
mp2an |
⊢ ( ℚ ↑m 𝐼 ) ⊆ ( ℝ ↑m 𝐼 ) |
| 75 |
74
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( ℚ ↑m 𝐼 ) ⊆ ( ℝ ↑m 𝐼 ) ) |
| 76 |
75 70
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝑦 ∈ ( ℝ ↑m 𝐼 ) ) |
| 77 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝐼 ∈ Fin ) |
| 78 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝐼 ≠ ∅ ) |
| 79 |
|
eqid |
⊢ ( ♯ ‘ 𝐼 ) = ( ♯ ‘ 𝐼 ) |
| 80 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝑋 ∈ ( ℝ ↑m 𝐼 ) ) |
| 81 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → 𝜑 ) |
| 82 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑦 ‘ 𝑘 ) = ( 𝑦 ‘ 𝑖 ) ) |
| 83 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑋 ‘ 𝑘 ) = ( 𝑋 ‘ 𝑖 ) ) |
| 84 |
83
|
oveq1d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) = ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 85 |
83 84
|
oveq12d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) = ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) |
| 86 |
85
|
ineq2d |
⊢ ( 𝑘 = 𝑖 → ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) = ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
| 87 |
82 86
|
eleq12d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ↔ ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) |
| 88 |
87
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
| 89 |
88
|
biimpi |
⊢ ( ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → ∀ 𝑖 ∈ 𝐼 ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
| 90 |
89
|
adantr |
⊢ ( ( ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ∀ 𝑖 ∈ 𝐼 ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
| 91 |
|
simpr |
⊢ ( ( ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) |
| 92 |
|
rspa |
⊢ ( ( ∀ 𝑖 ∈ 𝐼 ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
| 93 |
90 91 92
|
syl2anc |
⊢ ( ( ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
| 94 |
93
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) |
| 95 |
|
elinel2 |
⊢ ( ( 𝑦 ‘ 𝑖 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) |
| 96 |
94 95
|
syl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) |
| 97 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) |
| 98 |
12
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑖 ) ∈ ℝ ) |
| 99 |
98
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑖 ) ∈ ℝ ) |
| 100 |
|
simp2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) |
| 101 |
100
|
elioored |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑖 ) ∈ ℝ ) |
| 102 |
99
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑖 ) ∈ ℝ* ) |
| 103 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝐸 ∈ ℝ ) |
| 104 |
2 22
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℕ ) |
| 105 |
104
|
nnred |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℝ ) |
| 106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ♯ ‘ 𝐼 ) ∈ ℝ ) |
| 107 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 108 |
104
|
nngt0d |
⊢ ( 𝜑 → 0 < ( ♯ ‘ 𝐼 ) ) |
| 109 |
107 105 108
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( ♯ ‘ 𝐼 ) ) |
| 110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 0 ≤ ( ♯ ‘ 𝐼 ) ) |
| 111 |
106 110
|
resqrtcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ ) |
| 112 |
|
sqrtgt0 |
⊢ ( ( ( ♯ ‘ 𝐼 ) ∈ ℝ ∧ 0 < ( ♯ ‘ 𝐼 ) ) → 0 < ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) |
| 113 |
105 108 112
|
syl2anc |
⊢ ( 𝜑 → 0 < ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) |
| 114 |
107 113
|
gtned |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ≠ 0 ) |
| 115 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ≠ 0 ) |
| 116 |
103 111 115
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ ) |
| 117 |
98 116
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ ) |
| 118 |
117
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ* ) |
| 119 |
118
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ* ) |
| 120 |
|
ioogtlb |
⊢ ( ( ( 𝑋 ‘ 𝑖 ) ∈ ℝ* ∧ ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ* ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → ( 𝑋 ‘ 𝑖 ) < ( 𝑦 ‘ 𝑖 ) ) |
| 121 |
102 119 100 120
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑖 ) < ( 𝑦 ‘ 𝑖 ) ) |
| 122 |
99 101 121
|
ltled |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑖 ) ≤ ( 𝑦 ‘ 𝑖 ) ) |
| 123 |
99 101 122
|
abssuble0d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( abs ‘ ( ( 𝑋 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ) = ( ( 𝑦 ‘ 𝑖 ) − ( 𝑋 ‘ 𝑖 ) ) ) |
| 124 |
117
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ ) |
| 125 |
|
iooltub |
⊢ ( ( ( 𝑋 ‘ 𝑖 ) ∈ ℝ* ∧ ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ* ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → ( 𝑦 ‘ 𝑖 ) < ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 126 |
102 119 100 125
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑖 ) < ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 127 |
101 124 99 126
|
ltsub1dd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ‘ 𝑖 ) − ( 𝑋 ‘ 𝑖 ) ) < ( ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) − ( 𝑋 ‘ 𝑖 ) ) ) |
| 128 |
99
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑖 ) ∈ ℂ ) |
| 129 |
105 109
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ ) |
| 130 |
17 129 114
|
redivcld |
⊢ ( 𝜑 → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ ) |
| 131 |
130
|
recnd |
⊢ ( 𝜑 → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℂ ) |
| 132 |
131
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℂ ) |
| 133 |
128 132
|
pncan2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) − ( 𝑋 ‘ 𝑖 ) ) = ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 134 |
127 133
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ‘ 𝑖 ) − ( 𝑋 ‘ 𝑖 ) ) < ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 135 |
123 134
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ‘ 𝑖 ) ∈ ( ( 𝑋 ‘ 𝑖 ) (,) ( ( 𝑋 ‘ 𝑖 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( abs ‘ ( ( 𝑋 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ) < ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 136 |
81 96 97 135
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( abs ‘ ( ( 𝑋 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ) < ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 137 |
136
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( abs ‘ ( ( 𝑋 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ) < ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 138 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝐸 ∈ ℝ+ ) |
| 139 |
105 108
|
elrpd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℝ+ ) |
| 140 |
139
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( ♯ ‘ 𝐼 ) ∈ ℝ+ ) |
| 141 |
140
|
rpsqrtcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ+ ) |
| 142 |
138 141
|
rpdivcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
| 143 |
77 78 79 80 76 137 142 4
|
rrndistlt |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( 𝑋 𝐷 𝑦 ) < ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 144 |
138
|
rpcnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝐸 ∈ ℂ ) |
| 145 |
140
|
rpcnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( ♯ ‘ 𝐼 ) ∈ ℂ ) |
| 146 |
145
|
sqrtcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℂ ) |
| 147 |
141
|
rpne0d |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ≠ 0 ) |
| 148 |
144 146 147
|
divcan2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) = 𝐸 ) |
| 149 |
143 148
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( 𝑋 𝐷 𝑦 ) < 𝐸 ) |
| 150 |
76 149
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( 𝑦 ∈ ( ℝ ↑m 𝐼 ) ∧ ( 𝑋 𝐷 𝑦 ) < 𝐸 ) ) |
| 151 |
4
|
rrxmetfi |
⊢ ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 152 |
1 151
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 153 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 154 |
152 153
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 155 |
17
|
rexrd |
⊢ ( 𝜑 → 𝐸 ∈ ℝ* ) |
| 156 |
|
elbl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝐼 ) ) ∧ 𝑋 ∈ ( ℝ ↑m 𝐼 ) ∧ 𝐸 ∈ ℝ* ) → ( 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ↔ ( 𝑦 ∈ ( ℝ ↑m 𝐼 ) ∧ ( 𝑋 𝐷 𝑦 ) < 𝐸 ) ) ) |
| 157 |
154 3 155 156
|
syl3anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ↔ ( 𝑦 ∈ ( ℝ ↑m 𝐼 ) ∧ ( 𝑋 𝐷 𝑦 ) < 𝐸 ) ) ) |
| 158 |
157
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ↔ ( 𝑦 ∈ ( ℝ ↑m 𝐼 ) ∧ ( 𝑋 𝐷 𝑦 ) < 𝐸 ) ) ) |
| 159 |
150 158
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |
| 160 |
70 159
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) ) → ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) |
| 161 |
160
|
ex |
⊢ ( 𝜑 → ( ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) ) |
| 162 |
161
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ( 𝑦 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑦 ‘ 𝑘 ) ∈ ( ℚ ∩ ( ( 𝑋 ‘ 𝑘 ) (,) ( ( 𝑋 ‘ 𝑘 ) + ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) ) → ∃ 𝑦 ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) ) |
| 163 |
58 162
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) |
| 164 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) |
| 165 |
163 164
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |