Step |
Hyp |
Ref |
Expression |
1 |
|
qndenserrnbl.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
2 |
|
qndenserrnbl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ℝ ↑m 𝐼 ) ) |
3 |
|
qndenserrnbl.d |
⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) |
4 |
|
qndenserrnbl.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
5 |
|
0ex |
⊢ ∅ ∈ V |
6 |
5
|
snid |
⊢ ∅ ∈ { ∅ } |
7 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ∅ ∈ { ∅ } ) |
8 |
|
oveq2 |
⊢ ( 𝐼 = ∅ → ( ℚ ↑m 𝐼 ) = ( ℚ ↑m ∅ ) ) |
9 |
|
qex |
⊢ ℚ ∈ V |
10 |
|
mapdm0 |
⊢ ( ℚ ∈ V → ( ℚ ↑m ∅ ) = { ∅ } ) |
11 |
9 10
|
ax-mp |
⊢ ( ℚ ↑m ∅ ) = { ∅ } |
12 |
11
|
a1i |
⊢ ( 𝐼 = ∅ → ( ℚ ↑m ∅ ) = { ∅ } ) |
13 |
8 12
|
eqtr2d |
⊢ ( 𝐼 = ∅ → { ∅ } = ( ℚ ↑m 𝐼 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → { ∅ } = ( ℚ ↑m 𝐼 ) ) |
15 |
7 14
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ∅ ∈ ( ℚ ↑m 𝐼 ) ) |
16 |
3
|
rrxmetfi |
⊢ ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
17 |
1 16
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
18 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
21 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → 𝑋 ∈ ( ℝ ↑m 𝐼 ) ) |
22 |
|
oveq2 |
⊢ ( 𝐼 = ∅ → ( ℝ ↑m 𝐼 ) = ( ℝ ↑m ∅ ) ) |
23 |
|
reex |
⊢ ℝ ∈ V |
24 |
|
mapdm0 |
⊢ ( ℝ ∈ V → ( ℝ ↑m ∅ ) = { ∅ } ) |
25 |
23 24
|
ax-mp |
⊢ ( ℝ ↑m ∅ ) = { ∅ } |
26 |
25
|
a1i |
⊢ ( 𝐼 = ∅ → ( ℝ ↑m ∅ ) = { ∅ } ) |
27 |
22 26
|
eqtrd |
⊢ ( 𝐼 = ∅ → ( ℝ ↑m 𝐼 ) = { ∅ } ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ( ℝ ↑m 𝐼 ) = { ∅ } ) |
29 |
21 28
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → 𝑋 ∈ { ∅ } ) |
30 |
|
elsng |
⊢ ( 𝑋 ∈ ( ℝ ↑m 𝐼 ) → ( 𝑋 ∈ { ∅ } ↔ 𝑋 = ∅ ) ) |
31 |
2 30
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ { ∅ } ↔ 𝑋 = ∅ ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ( 𝑋 ∈ { ∅ } ↔ 𝑋 = ∅ ) ) |
33 |
29 32
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → 𝑋 = ∅ ) |
34 |
33
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ∅ = 𝑋 ) |
35 |
34 21
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ∅ ∈ ( ℝ ↑m 𝐼 ) ) |
36 |
4
|
rpxrd |
⊢ ( 𝜑 → 𝐸 ∈ ℝ* ) |
37 |
4
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐸 ) |
38 |
36 37
|
jca |
⊢ ( 𝜑 → ( 𝐸 ∈ ℝ* ∧ 0 < 𝐸 ) ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ( 𝐸 ∈ ℝ* ∧ 0 < 𝐸 ) ) |
40 |
|
xblcntr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝐼 ) ) ∧ ∅ ∈ ( ℝ ↑m 𝐼 ) ∧ ( 𝐸 ∈ ℝ* ∧ 0 < 𝐸 ) ) → ∅ ∈ ( ∅ ( ball ‘ 𝐷 ) 𝐸 ) ) |
41 |
20 35 39 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ∅ ∈ ( ∅ ( ball ‘ 𝐷 ) 𝐸 ) ) |
42 |
34
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ( ∅ ( ball ‘ 𝐷 ) 𝐸 ) = ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |
43 |
41 42
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ∅ ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |
44 |
|
eleq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ↔ ∅ ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) |
45 |
44
|
rspcev |
⊢ ( ( ∅ ∈ ( ℚ ↑m 𝐼 ) ∧ ∅ ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |
46 |
15 43 45
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |
47 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 = ∅ ) → 𝐼 ∈ Fin ) |
48 |
|
neqne |
⊢ ( ¬ 𝐼 = ∅ → 𝐼 ≠ ∅ ) |
49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 = ∅ ) → 𝐼 ≠ ∅ ) |
50 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 = ∅ ) → 𝑋 ∈ ( ℝ ↑m 𝐼 ) ) |
51 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 = ∅ ) → 𝐸 ∈ ℝ+ ) |
52 |
47 49 50 3 51
|
qndenserrnbllem |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 = ∅ ) → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |
53 |
46 52
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |