| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qndenserrnbl.i | ⊢ ( 𝜑  →  𝐼  ∈  Fin ) | 
						
							| 2 |  | qndenserrnbl.x | ⊢ ( 𝜑  →  𝑋  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 3 |  | qndenserrnbl.d | ⊢ 𝐷  =  ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | 
						
							| 4 |  | qndenserrnbl.e | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 5 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 6 | 5 | snid | ⊢ ∅  ∈  { ∅ } | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝜑  ∧  𝐼  =  ∅ )  →  ∅  ∈  { ∅ } ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝐼  =  ∅  →  ( ℚ  ↑m  𝐼 )  =  ( ℚ  ↑m  ∅ ) ) | 
						
							| 9 |  | qex | ⊢ ℚ  ∈  V | 
						
							| 10 |  | mapdm0 | ⊢ ( ℚ  ∈  V  →  ( ℚ  ↑m  ∅ )  =  { ∅ } ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ( ℚ  ↑m  ∅ )  =  { ∅ } | 
						
							| 12 | 11 | a1i | ⊢ ( 𝐼  =  ∅  →  ( ℚ  ↑m  ∅ )  =  { ∅ } ) | 
						
							| 13 | 8 12 | eqtr2d | ⊢ ( 𝐼  =  ∅  →  { ∅ }  =  ( ℚ  ↑m  𝐼 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝐼  =  ∅ )  →  { ∅ }  =  ( ℚ  ↑m  𝐼 ) ) | 
						
							| 15 | 7 14 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝐼  =  ∅ )  →  ∅  ∈  ( ℚ  ↑m  𝐼 ) ) | 
						
							| 16 | 3 | rrxmetfi | ⊢ ( 𝐼  ∈  Fin  →  𝐷  ∈  ( Met ‘ ( ℝ  ↑m  𝐼 ) ) ) | 
						
							| 17 | 1 16 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ ( ℝ  ↑m  𝐼 ) ) ) | 
						
							| 18 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ ( ℝ  ↑m  𝐼 ) )  →  𝐷  ∈  ( ∞Met ‘ ( ℝ  ↑m  𝐼 ) ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ ( ℝ  ↑m  𝐼 ) ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  =  ∅ )  →  𝐷  ∈  ( ∞Met ‘ ( ℝ  ↑m  𝐼 ) ) ) | 
						
							| 21 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  =  ∅ )  →  𝑋  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝐼  =  ∅  →  ( ℝ  ↑m  𝐼 )  =  ( ℝ  ↑m  ∅ ) ) | 
						
							| 23 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 24 |  | mapdm0 | ⊢ ( ℝ  ∈  V  →  ( ℝ  ↑m  ∅ )  =  { ∅ } ) | 
						
							| 25 | 23 24 | ax-mp | ⊢ ( ℝ  ↑m  ∅ )  =  { ∅ } | 
						
							| 26 | 25 | a1i | ⊢ ( 𝐼  =  ∅  →  ( ℝ  ↑m  ∅ )  =  { ∅ } ) | 
						
							| 27 | 22 26 | eqtrd | ⊢ ( 𝐼  =  ∅  →  ( ℝ  ↑m  𝐼 )  =  { ∅ } ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝐼  =  ∅ )  →  ( ℝ  ↑m  𝐼 )  =  { ∅ } ) | 
						
							| 29 | 21 28 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝐼  =  ∅ )  →  𝑋  ∈  { ∅ } ) | 
						
							| 30 |  | elsng | ⊢ ( 𝑋  ∈  ( ℝ  ↑m  𝐼 )  →  ( 𝑋  ∈  { ∅ }  ↔  𝑋  =  ∅ ) ) | 
						
							| 31 | 2 30 | syl | ⊢ ( 𝜑  →  ( 𝑋  ∈  { ∅ }  ↔  𝑋  =  ∅ ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  =  ∅ )  →  ( 𝑋  ∈  { ∅ }  ↔  𝑋  =  ∅ ) ) | 
						
							| 33 | 29 32 | mpbid | ⊢ ( ( 𝜑  ∧  𝐼  =  ∅ )  →  𝑋  =  ∅ ) | 
						
							| 34 | 33 | eqcomd | ⊢ ( ( 𝜑  ∧  𝐼  =  ∅ )  →  ∅  =  𝑋 ) | 
						
							| 35 | 34 21 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝐼  =  ∅ )  →  ∅  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 36 | 4 | rpxrd | ⊢ ( 𝜑  →  𝐸  ∈  ℝ* ) | 
						
							| 37 | 4 | rpgt0d | ⊢ ( 𝜑  →  0  <  𝐸 ) | 
						
							| 38 | 36 37 | jca | ⊢ ( 𝜑  →  ( 𝐸  ∈  ℝ*  ∧  0  <  𝐸 ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  =  ∅ )  →  ( 𝐸  ∈  ℝ*  ∧  0  <  𝐸 ) ) | 
						
							| 40 |  | xblcntr | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ ( ℝ  ↑m  𝐼 ) )  ∧  ∅  ∈  ( ℝ  ↑m  𝐼 )  ∧  ( 𝐸  ∈  ℝ*  ∧  0  <  𝐸 ) )  →  ∅  ∈  ( ∅ ( ball ‘ 𝐷 ) 𝐸 ) ) | 
						
							| 41 | 20 35 39 40 | syl3anc | ⊢ ( ( 𝜑  ∧  𝐼  =  ∅ )  →  ∅  ∈  ( ∅ ( ball ‘ 𝐷 ) 𝐸 ) ) | 
						
							| 42 | 34 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐼  =  ∅ )  →  ( ∅ ( ball ‘ 𝐷 ) 𝐸 )  =  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) | 
						
							| 43 | 41 42 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝐼  =  ∅ )  →  ∅  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) | 
						
							| 44 |  | eleq1 | ⊢ ( 𝑦  =  ∅  →  ( 𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 )  ↔  ∅  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) | 
						
							| 45 | 44 | rspcev | ⊢ ( ( ∅  ∈  ( ℚ  ↑m  𝐼 )  ∧  ∅  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) )  →  ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) | 
						
							| 46 | 15 43 45 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐼  =  ∅ )  →  ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) | 
						
							| 47 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  ∅ )  →  𝐼  ∈  Fin ) | 
						
							| 48 |  | neqne | ⊢ ( ¬  𝐼  =  ∅  →  𝐼  ≠  ∅ ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  ∅ )  →  𝐼  ≠  ∅ ) | 
						
							| 50 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  ∅ )  →  𝑋  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 51 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  ∅ )  →  𝐸  ∈  ℝ+ ) | 
						
							| 52 | 47 49 50 3 51 | qndenserrnbllem | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  ∅ )  →  ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) | 
						
							| 53 | 46 52 | pm2.61dan | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |