| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qndenserrnbl.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 2 |
|
qndenserrnbl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ℝ ↑m 𝐼 ) ) |
| 3 |
|
qndenserrnbl.d |
⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) |
| 4 |
|
qndenserrnbl.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 5 |
|
0ex |
⊢ ∅ ∈ V |
| 6 |
5
|
snid |
⊢ ∅ ∈ { ∅ } |
| 7 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ∅ ∈ { ∅ } ) |
| 8 |
|
oveq2 |
⊢ ( 𝐼 = ∅ → ( ℚ ↑m 𝐼 ) = ( ℚ ↑m ∅ ) ) |
| 9 |
|
qex |
⊢ ℚ ∈ V |
| 10 |
|
mapdm0 |
⊢ ( ℚ ∈ V → ( ℚ ↑m ∅ ) = { ∅ } ) |
| 11 |
9 10
|
ax-mp |
⊢ ( ℚ ↑m ∅ ) = { ∅ } |
| 12 |
11
|
a1i |
⊢ ( 𝐼 = ∅ → ( ℚ ↑m ∅ ) = { ∅ } ) |
| 13 |
8 12
|
eqtr2d |
⊢ ( 𝐼 = ∅ → { ∅ } = ( ℚ ↑m 𝐼 ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → { ∅ } = ( ℚ ↑m 𝐼 ) ) |
| 15 |
7 14
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ∅ ∈ ( ℚ ↑m 𝐼 ) ) |
| 16 |
3
|
rrxmetfi |
⊢ ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 17 |
1 16
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 18 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 21 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → 𝑋 ∈ ( ℝ ↑m 𝐼 ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝐼 = ∅ → ( ℝ ↑m 𝐼 ) = ( ℝ ↑m ∅ ) ) |
| 23 |
|
reex |
⊢ ℝ ∈ V |
| 24 |
|
mapdm0 |
⊢ ( ℝ ∈ V → ( ℝ ↑m ∅ ) = { ∅ } ) |
| 25 |
23 24
|
ax-mp |
⊢ ( ℝ ↑m ∅ ) = { ∅ } |
| 26 |
25
|
a1i |
⊢ ( 𝐼 = ∅ → ( ℝ ↑m ∅ ) = { ∅ } ) |
| 27 |
22 26
|
eqtrd |
⊢ ( 𝐼 = ∅ → ( ℝ ↑m 𝐼 ) = { ∅ } ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ( ℝ ↑m 𝐼 ) = { ∅ } ) |
| 29 |
21 28
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → 𝑋 ∈ { ∅ } ) |
| 30 |
|
elsng |
⊢ ( 𝑋 ∈ ( ℝ ↑m 𝐼 ) → ( 𝑋 ∈ { ∅ } ↔ 𝑋 = ∅ ) ) |
| 31 |
2 30
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ { ∅ } ↔ 𝑋 = ∅ ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ( 𝑋 ∈ { ∅ } ↔ 𝑋 = ∅ ) ) |
| 33 |
29 32
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → 𝑋 = ∅ ) |
| 34 |
33
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ∅ = 𝑋 ) |
| 35 |
34 21
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ∅ ∈ ( ℝ ↑m 𝐼 ) ) |
| 36 |
4
|
rpxrd |
⊢ ( 𝜑 → 𝐸 ∈ ℝ* ) |
| 37 |
4
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐸 ) |
| 38 |
36 37
|
jca |
⊢ ( 𝜑 → ( 𝐸 ∈ ℝ* ∧ 0 < 𝐸 ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ( 𝐸 ∈ ℝ* ∧ 0 < 𝐸 ) ) |
| 40 |
|
xblcntr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝐼 ) ) ∧ ∅ ∈ ( ℝ ↑m 𝐼 ) ∧ ( 𝐸 ∈ ℝ* ∧ 0 < 𝐸 ) ) → ∅ ∈ ( ∅ ( ball ‘ 𝐷 ) 𝐸 ) ) |
| 41 |
20 35 39 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ∅ ∈ ( ∅ ( ball ‘ 𝐷 ) 𝐸 ) ) |
| 42 |
34
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ( ∅ ( ball ‘ 𝐷 ) 𝐸 ) = ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |
| 43 |
41 42
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ∅ ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |
| 44 |
|
eleq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ↔ ∅ ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) ) |
| 45 |
44
|
rspcev |
⊢ ( ( ∅ ∈ ( ℚ ↑m 𝐼 ) ∧ ∅ ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |
| 46 |
15 43 45
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐼 = ∅ ) → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |
| 47 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 = ∅ ) → 𝐼 ∈ Fin ) |
| 48 |
|
neqne |
⊢ ( ¬ 𝐼 = ∅ → 𝐼 ≠ ∅ ) |
| 49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 = ∅ ) → 𝐼 ≠ ∅ ) |
| 50 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 = ∅ ) → 𝑋 ∈ ( ℝ ↑m 𝐼 ) ) |
| 51 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 = ∅ ) → 𝐸 ∈ ℝ+ ) |
| 52 |
47 49 50 3 51
|
qndenserrnbllem |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 = ∅ ) → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |
| 53 |
46 52
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝐸 ) ) |