Metamath Proof Explorer


Theorem qndenserrnbl

Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses qndenserrnbl.i
|- ( ph -> I e. Fin )
qndenserrnbl.x
|- ( ph -> X e. ( RR ^m I ) )
qndenserrnbl.d
|- D = ( dist ` ( RR^ ` I ) )
qndenserrnbl.e
|- ( ph -> E e. RR+ )
Assertion qndenserrnbl
|- ( ph -> E. y e. ( QQ ^m I ) y e. ( X ( ball ` D ) E ) )

Proof

Step Hyp Ref Expression
1 qndenserrnbl.i
 |-  ( ph -> I e. Fin )
2 qndenserrnbl.x
 |-  ( ph -> X e. ( RR ^m I ) )
3 qndenserrnbl.d
 |-  D = ( dist ` ( RR^ ` I ) )
4 qndenserrnbl.e
 |-  ( ph -> E e. RR+ )
5 0ex
 |-  (/) e. _V
6 5 snid
 |-  (/) e. { (/) }
7 6 a1i
 |-  ( ( ph /\ I = (/) ) -> (/) e. { (/) } )
8 oveq2
 |-  ( I = (/) -> ( QQ ^m I ) = ( QQ ^m (/) ) )
9 qex
 |-  QQ e. _V
10 mapdm0
 |-  ( QQ e. _V -> ( QQ ^m (/) ) = { (/) } )
11 9 10 ax-mp
 |-  ( QQ ^m (/) ) = { (/) }
12 11 a1i
 |-  ( I = (/) -> ( QQ ^m (/) ) = { (/) } )
13 8 12 eqtr2d
 |-  ( I = (/) -> { (/) } = ( QQ ^m I ) )
14 13 adantl
 |-  ( ( ph /\ I = (/) ) -> { (/) } = ( QQ ^m I ) )
15 7 14 eleqtrd
 |-  ( ( ph /\ I = (/) ) -> (/) e. ( QQ ^m I ) )
16 3 rrxmetfi
 |-  ( I e. Fin -> D e. ( Met ` ( RR ^m I ) ) )
17 1 16 syl
 |-  ( ph -> D e. ( Met ` ( RR ^m I ) ) )
18 metxmet
 |-  ( D e. ( Met ` ( RR ^m I ) ) -> D e. ( *Met ` ( RR ^m I ) ) )
19 17 18 syl
 |-  ( ph -> D e. ( *Met ` ( RR ^m I ) ) )
20 19 adantr
 |-  ( ( ph /\ I = (/) ) -> D e. ( *Met ` ( RR ^m I ) ) )
21 2 adantr
 |-  ( ( ph /\ I = (/) ) -> X e. ( RR ^m I ) )
22 oveq2
 |-  ( I = (/) -> ( RR ^m I ) = ( RR ^m (/) ) )
23 reex
 |-  RR e. _V
24 mapdm0
 |-  ( RR e. _V -> ( RR ^m (/) ) = { (/) } )
25 23 24 ax-mp
 |-  ( RR ^m (/) ) = { (/) }
26 25 a1i
 |-  ( I = (/) -> ( RR ^m (/) ) = { (/) } )
27 22 26 eqtrd
 |-  ( I = (/) -> ( RR ^m I ) = { (/) } )
28 27 adantl
 |-  ( ( ph /\ I = (/) ) -> ( RR ^m I ) = { (/) } )
29 21 28 eleqtrd
 |-  ( ( ph /\ I = (/) ) -> X e. { (/) } )
30 elsng
 |-  ( X e. ( RR ^m I ) -> ( X e. { (/) } <-> X = (/) ) )
31 2 30 syl
 |-  ( ph -> ( X e. { (/) } <-> X = (/) ) )
32 31 adantr
 |-  ( ( ph /\ I = (/) ) -> ( X e. { (/) } <-> X = (/) ) )
33 29 32 mpbid
 |-  ( ( ph /\ I = (/) ) -> X = (/) )
34 33 eqcomd
 |-  ( ( ph /\ I = (/) ) -> (/) = X )
35 34 21 eqeltrd
 |-  ( ( ph /\ I = (/) ) -> (/) e. ( RR ^m I ) )
36 4 rpxrd
 |-  ( ph -> E e. RR* )
37 4 rpgt0d
 |-  ( ph -> 0 < E )
38 36 37 jca
 |-  ( ph -> ( E e. RR* /\ 0 < E ) )
39 38 adantr
 |-  ( ( ph /\ I = (/) ) -> ( E e. RR* /\ 0 < E ) )
40 xblcntr
 |-  ( ( D e. ( *Met ` ( RR ^m I ) ) /\ (/) e. ( RR ^m I ) /\ ( E e. RR* /\ 0 < E ) ) -> (/) e. ( (/) ( ball ` D ) E ) )
41 20 35 39 40 syl3anc
 |-  ( ( ph /\ I = (/) ) -> (/) e. ( (/) ( ball ` D ) E ) )
42 34 oveq1d
 |-  ( ( ph /\ I = (/) ) -> ( (/) ( ball ` D ) E ) = ( X ( ball ` D ) E ) )
43 41 42 eleqtrd
 |-  ( ( ph /\ I = (/) ) -> (/) e. ( X ( ball ` D ) E ) )
44 eleq1
 |-  ( y = (/) -> ( y e. ( X ( ball ` D ) E ) <-> (/) e. ( X ( ball ` D ) E ) ) )
45 44 rspcev
 |-  ( ( (/) e. ( QQ ^m I ) /\ (/) e. ( X ( ball ` D ) E ) ) -> E. y e. ( QQ ^m I ) y e. ( X ( ball ` D ) E ) )
46 15 43 45 syl2anc
 |-  ( ( ph /\ I = (/) ) -> E. y e. ( QQ ^m I ) y e. ( X ( ball ` D ) E ) )
47 1 adantr
 |-  ( ( ph /\ -. I = (/) ) -> I e. Fin )
48 neqne
 |-  ( -. I = (/) -> I =/= (/) )
49 48 adantl
 |-  ( ( ph /\ -. I = (/) ) -> I =/= (/) )
50 2 adantr
 |-  ( ( ph /\ -. I = (/) ) -> X e. ( RR ^m I ) )
51 4 adantr
 |-  ( ( ph /\ -. I = (/) ) -> E e. RR+ )
52 47 49 50 3 51 qndenserrnbllem
 |-  ( ( ph /\ -. I = (/) ) -> E. y e. ( QQ ^m I ) y e. ( X ( ball ` D ) E ) )
53 46 52 pm2.61dan
 |-  ( ph -> E. y e. ( QQ ^m I ) y e. ( X ( ball ` D ) E ) )