Step |
Hyp |
Ref |
Expression |
1 |
|
qndenserrnbl.i |
|- ( ph -> I e. Fin ) |
2 |
|
qndenserrnbl.x |
|- ( ph -> X e. ( RR ^m I ) ) |
3 |
|
qndenserrnbl.d |
|- D = ( dist ` ( RR^ ` I ) ) |
4 |
|
qndenserrnbl.e |
|- ( ph -> E e. RR+ ) |
5 |
|
0ex |
|- (/) e. _V |
6 |
5
|
snid |
|- (/) e. { (/) } |
7 |
6
|
a1i |
|- ( ( ph /\ I = (/) ) -> (/) e. { (/) } ) |
8 |
|
oveq2 |
|- ( I = (/) -> ( QQ ^m I ) = ( QQ ^m (/) ) ) |
9 |
|
qex |
|- QQ e. _V |
10 |
|
mapdm0 |
|- ( QQ e. _V -> ( QQ ^m (/) ) = { (/) } ) |
11 |
9 10
|
ax-mp |
|- ( QQ ^m (/) ) = { (/) } |
12 |
11
|
a1i |
|- ( I = (/) -> ( QQ ^m (/) ) = { (/) } ) |
13 |
8 12
|
eqtr2d |
|- ( I = (/) -> { (/) } = ( QQ ^m I ) ) |
14 |
13
|
adantl |
|- ( ( ph /\ I = (/) ) -> { (/) } = ( QQ ^m I ) ) |
15 |
7 14
|
eleqtrd |
|- ( ( ph /\ I = (/) ) -> (/) e. ( QQ ^m I ) ) |
16 |
3
|
rrxmetfi |
|- ( I e. Fin -> D e. ( Met ` ( RR ^m I ) ) ) |
17 |
1 16
|
syl |
|- ( ph -> D e. ( Met ` ( RR ^m I ) ) ) |
18 |
|
metxmet |
|- ( D e. ( Met ` ( RR ^m I ) ) -> D e. ( *Met ` ( RR ^m I ) ) ) |
19 |
17 18
|
syl |
|- ( ph -> D e. ( *Met ` ( RR ^m I ) ) ) |
20 |
19
|
adantr |
|- ( ( ph /\ I = (/) ) -> D e. ( *Met ` ( RR ^m I ) ) ) |
21 |
2
|
adantr |
|- ( ( ph /\ I = (/) ) -> X e. ( RR ^m I ) ) |
22 |
|
oveq2 |
|- ( I = (/) -> ( RR ^m I ) = ( RR ^m (/) ) ) |
23 |
|
reex |
|- RR e. _V |
24 |
|
mapdm0 |
|- ( RR e. _V -> ( RR ^m (/) ) = { (/) } ) |
25 |
23 24
|
ax-mp |
|- ( RR ^m (/) ) = { (/) } |
26 |
25
|
a1i |
|- ( I = (/) -> ( RR ^m (/) ) = { (/) } ) |
27 |
22 26
|
eqtrd |
|- ( I = (/) -> ( RR ^m I ) = { (/) } ) |
28 |
27
|
adantl |
|- ( ( ph /\ I = (/) ) -> ( RR ^m I ) = { (/) } ) |
29 |
21 28
|
eleqtrd |
|- ( ( ph /\ I = (/) ) -> X e. { (/) } ) |
30 |
|
elsng |
|- ( X e. ( RR ^m I ) -> ( X e. { (/) } <-> X = (/) ) ) |
31 |
2 30
|
syl |
|- ( ph -> ( X e. { (/) } <-> X = (/) ) ) |
32 |
31
|
adantr |
|- ( ( ph /\ I = (/) ) -> ( X e. { (/) } <-> X = (/) ) ) |
33 |
29 32
|
mpbid |
|- ( ( ph /\ I = (/) ) -> X = (/) ) |
34 |
33
|
eqcomd |
|- ( ( ph /\ I = (/) ) -> (/) = X ) |
35 |
34 21
|
eqeltrd |
|- ( ( ph /\ I = (/) ) -> (/) e. ( RR ^m I ) ) |
36 |
4
|
rpxrd |
|- ( ph -> E e. RR* ) |
37 |
4
|
rpgt0d |
|- ( ph -> 0 < E ) |
38 |
36 37
|
jca |
|- ( ph -> ( E e. RR* /\ 0 < E ) ) |
39 |
38
|
adantr |
|- ( ( ph /\ I = (/) ) -> ( E e. RR* /\ 0 < E ) ) |
40 |
|
xblcntr |
|- ( ( D e. ( *Met ` ( RR ^m I ) ) /\ (/) e. ( RR ^m I ) /\ ( E e. RR* /\ 0 < E ) ) -> (/) e. ( (/) ( ball ` D ) E ) ) |
41 |
20 35 39 40
|
syl3anc |
|- ( ( ph /\ I = (/) ) -> (/) e. ( (/) ( ball ` D ) E ) ) |
42 |
34
|
oveq1d |
|- ( ( ph /\ I = (/) ) -> ( (/) ( ball ` D ) E ) = ( X ( ball ` D ) E ) ) |
43 |
41 42
|
eleqtrd |
|- ( ( ph /\ I = (/) ) -> (/) e. ( X ( ball ` D ) E ) ) |
44 |
|
eleq1 |
|- ( y = (/) -> ( y e. ( X ( ball ` D ) E ) <-> (/) e. ( X ( ball ` D ) E ) ) ) |
45 |
44
|
rspcev |
|- ( ( (/) e. ( QQ ^m I ) /\ (/) e. ( X ( ball ` D ) E ) ) -> E. y e. ( QQ ^m I ) y e. ( X ( ball ` D ) E ) ) |
46 |
15 43 45
|
syl2anc |
|- ( ( ph /\ I = (/) ) -> E. y e. ( QQ ^m I ) y e. ( X ( ball ` D ) E ) ) |
47 |
1
|
adantr |
|- ( ( ph /\ -. I = (/) ) -> I e. Fin ) |
48 |
|
neqne |
|- ( -. I = (/) -> I =/= (/) ) |
49 |
48
|
adantl |
|- ( ( ph /\ -. I = (/) ) -> I =/= (/) ) |
50 |
2
|
adantr |
|- ( ( ph /\ -. I = (/) ) -> X e. ( RR ^m I ) ) |
51 |
4
|
adantr |
|- ( ( ph /\ -. I = (/) ) -> E e. RR+ ) |
52 |
47 49 50 3 51
|
qndenserrnbllem |
|- ( ( ph /\ -. I = (/) ) -> E. y e. ( QQ ^m I ) y e. ( X ( ball ` D ) E ) ) |
53 |
46 52
|
pm2.61dan |
|- ( ph -> E. y e. ( QQ ^m I ) y e. ( X ( ball ` D ) E ) ) |