| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qndenserrnbl.i |  |-  ( ph -> I e. Fin ) | 
						
							| 2 |  | qndenserrnbl.x |  |-  ( ph -> X e. ( RR ^m I ) ) | 
						
							| 3 |  | qndenserrnbl.d |  |-  D = ( dist ` ( RR^ ` I ) ) | 
						
							| 4 |  | qndenserrnbl.e |  |-  ( ph -> E e. RR+ ) | 
						
							| 5 |  | 0ex |  |-  (/) e. _V | 
						
							| 6 | 5 | snid |  |-  (/) e. { (/) } | 
						
							| 7 | 6 | a1i |  |-  ( ( ph /\ I = (/) ) -> (/) e. { (/) } ) | 
						
							| 8 |  | oveq2 |  |-  ( I = (/) -> ( QQ ^m I ) = ( QQ ^m (/) ) ) | 
						
							| 9 |  | qex |  |-  QQ e. _V | 
						
							| 10 |  | mapdm0 |  |-  ( QQ e. _V -> ( QQ ^m (/) ) = { (/) } ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ( QQ ^m (/) ) = { (/) } | 
						
							| 12 | 11 | a1i |  |-  ( I = (/) -> ( QQ ^m (/) ) = { (/) } ) | 
						
							| 13 | 8 12 | eqtr2d |  |-  ( I = (/) -> { (/) } = ( QQ ^m I ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ I = (/) ) -> { (/) } = ( QQ ^m I ) ) | 
						
							| 15 | 7 14 | eleqtrd |  |-  ( ( ph /\ I = (/) ) -> (/) e. ( QQ ^m I ) ) | 
						
							| 16 | 3 | rrxmetfi |  |-  ( I e. Fin -> D e. ( Met ` ( RR ^m I ) ) ) | 
						
							| 17 | 1 16 | syl |  |-  ( ph -> D e. ( Met ` ( RR ^m I ) ) ) | 
						
							| 18 |  | metxmet |  |-  ( D e. ( Met ` ( RR ^m I ) ) -> D e. ( *Met ` ( RR ^m I ) ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( ph -> D e. ( *Met ` ( RR ^m I ) ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ I = (/) ) -> D e. ( *Met ` ( RR ^m I ) ) ) | 
						
							| 21 | 2 | adantr |  |-  ( ( ph /\ I = (/) ) -> X e. ( RR ^m I ) ) | 
						
							| 22 |  | oveq2 |  |-  ( I = (/) -> ( RR ^m I ) = ( RR ^m (/) ) ) | 
						
							| 23 |  | reex |  |-  RR e. _V | 
						
							| 24 |  | mapdm0 |  |-  ( RR e. _V -> ( RR ^m (/) ) = { (/) } ) | 
						
							| 25 | 23 24 | ax-mp |  |-  ( RR ^m (/) ) = { (/) } | 
						
							| 26 | 25 | a1i |  |-  ( I = (/) -> ( RR ^m (/) ) = { (/) } ) | 
						
							| 27 | 22 26 | eqtrd |  |-  ( I = (/) -> ( RR ^m I ) = { (/) } ) | 
						
							| 28 | 27 | adantl |  |-  ( ( ph /\ I = (/) ) -> ( RR ^m I ) = { (/) } ) | 
						
							| 29 | 21 28 | eleqtrd |  |-  ( ( ph /\ I = (/) ) -> X e. { (/) } ) | 
						
							| 30 |  | elsng |  |-  ( X e. ( RR ^m I ) -> ( X e. { (/) } <-> X = (/) ) ) | 
						
							| 31 | 2 30 | syl |  |-  ( ph -> ( X e. { (/) } <-> X = (/) ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ I = (/) ) -> ( X e. { (/) } <-> X = (/) ) ) | 
						
							| 33 | 29 32 | mpbid |  |-  ( ( ph /\ I = (/) ) -> X = (/) ) | 
						
							| 34 | 33 | eqcomd |  |-  ( ( ph /\ I = (/) ) -> (/) = X ) | 
						
							| 35 | 34 21 | eqeltrd |  |-  ( ( ph /\ I = (/) ) -> (/) e. ( RR ^m I ) ) | 
						
							| 36 | 4 | rpxrd |  |-  ( ph -> E e. RR* ) | 
						
							| 37 | 4 | rpgt0d |  |-  ( ph -> 0 < E ) | 
						
							| 38 | 36 37 | jca |  |-  ( ph -> ( E e. RR* /\ 0 < E ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ I = (/) ) -> ( E e. RR* /\ 0 < E ) ) | 
						
							| 40 |  | xblcntr |  |-  ( ( D e. ( *Met ` ( RR ^m I ) ) /\ (/) e. ( RR ^m I ) /\ ( E e. RR* /\ 0 < E ) ) -> (/) e. ( (/) ( ball ` D ) E ) ) | 
						
							| 41 | 20 35 39 40 | syl3anc |  |-  ( ( ph /\ I = (/) ) -> (/) e. ( (/) ( ball ` D ) E ) ) | 
						
							| 42 | 34 | oveq1d |  |-  ( ( ph /\ I = (/) ) -> ( (/) ( ball ` D ) E ) = ( X ( ball ` D ) E ) ) | 
						
							| 43 | 41 42 | eleqtrd |  |-  ( ( ph /\ I = (/) ) -> (/) e. ( X ( ball ` D ) E ) ) | 
						
							| 44 |  | eleq1 |  |-  ( y = (/) -> ( y e. ( X ( ball ` D ) E ) <-> (/) e. ( X ( ball ` D ) E ) ) ) | 
						
							| 45 | 44 | rspcev |  |-  ( ( (/) e. ( QQ ^m I ) /\ (/) e. ( X ( ball ` D ) E ) ) -> E. y e. ( QQ ^m I ) y e. ( X ( ball ` D ) E ) ) | 
						
							| 46 | 15 43 45 | syl2anc |  |-  ( ( ph /\ I = (/) ) -> E. y e. ( QQ ^m I ) y e. ( X ( ball ` D ) E ) ) | 
						
							| 47 | 1 | adantr |  |-  ( ( ph /\ -. I = (/) ) -> I e. Fin ) | 
						
							| 48 |  | neqne |  |-  ( -. I = (/) -> I =/= (/) ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ph /\ -. I = (/) ) -> I =/= (/) ) | 
						
							| 50 | 2 | adantr |  |-  ( ( ph /\ -. I = (/) ) -> X e. ( RR ^m I ) ) | 
						
							| 51 | 4 | adantr |  |-  ( ( ph /\ -. I = (/) ) -> E e. RR+ ) | 
						
							| 52 | 47 49 50 3 51 | qndenserrnbllem |  |-  ( ( ph /\ -. I = (/) ) -> E. y e. ( QQ ^m I ) y e. ( X ( ball ` D ) E ) ) | 
						
							| 53 | 46 52 | pm2.61dan |  |-  ( ph -> E. y e. ( QQ ^m I ) y e. ( X ( ball ` D ) E ) ) |