Metamath Proof Explorer


Theorem rrxtopn0b

Description: The topology of the zero-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Assertion rrxtopn0b
|- ( TopOpen ` ( RR^ ` (/) ) ) = { (/) , { (/) } }

Proof

Step Hyp Ref Expression
1 rrxtopn0
 |-  ( TopOpen ` ( RR^ ` (/) ) ) = ~P { (/) }
2 pwsn
 |-  ~P { (/) } = { (/) , { (/) } }
3 1 2 eqtri
 |-  ( TopOpen ` ( RR^ ` (/) ) ) = { (/) , { (/) } }