Metamath Proof Explorer


Theorem rrxtopn0b

Description: The topology of the zero-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Assertion rrxtopn0b TopOpenmsup=

Proof

Step Hyp Ref Expression
1 rrxtopn0 TopOpenmsup=𝒫
2 pwsn 𝒫=
3 1 2 eqtri TopOpenmsup=