Metamath Proof Explorer


Theorem qndenserrnopnlem

Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses qndenserrnopnlem.i φ I Fin
qndenserrnopnlem.j J = TopOpen I
qndenserrnopnlem.v φ V J
qndenserrnopnlem.x φ X V
qndenserrnopnlem.d D = dist I
Assertion qndenserrnopnlem φ y I y V

Proof

Step Hyp Ref Expression
1 qndenserrnopnlem.i φ I Fin
2 qndenserrnopnlem.j J = TopOpen I
3 qndenserrnopnlem.v φ V J
4 qndenserrnopnlem.x φ X V
5 qndenserrnopnlem.d D = dist I
6 5 rrxmetfi I Fin D Met I
7 1 6 syl φ D Met I
8 metxmet D Met I D ∞Met I
9 7 8 syl φ D ∞Met I
10 3 2 eleqtrdi φ V TopOpen I
11 1 rrxtopnfi φ TopOpen I = MetOpen f I , g I k I f k g k 2
12 5 a1i φ D = dist I
13 eqid I = I
14 eqid I = I
15 13 14 rrxdsfi I Fin dist I = f I , g I k I f k g k 2
16 1 15 syl φ dist I = f I , g I k I f k g k 2
17 12 16 eqtr2d φ f I , g I k I f k g k 2 = D
18 17 fveq2d φ MetOpen f I , g I k I f k g k 2 = MetOpen D
19 11 18 eqtrd φ TopOpen I = MetOpen D
20 10 19 eleqtrd φ V MetOpen D
21 eqid MetOpen D = MetOpen D
22 21 mopni2 D ∞Met I V MetOpen D X V e + X ball D e V
23 9 20 4 22 syl3anc φ e + X ball D e V
24 1 3ad2ant1 φ e + X ball D e V I Fin
25 rrxtps I Fin I TopSp
26 1 25 syl φ I TopSp
27 eqid Base I = Base I
28 27 2 istps I TopSp J TopOn Base I
29 26 28 sylib φ J TopOn Base I
30 1 13 27 rrxbasefi φ Base I = I
31 30 fveq2d φ TopOn Base I = TopOn I
32 29 31 eleqtrd φ J TopOn I
33 toponss J TopOn I V J V I
34 32 3 33 syl2anc φ V I
35 34 4 sseldd φ X I
36 35 3ad2ant1 φ e + X ball D e V X I
37 simp2 φ e + X ball D e V e +
38 24 36 5 37 qndenserrnbl φ e + X ball D e V y I y X ball D e
39 ssel X ball D e V y X ball D e y V
40 39 adantr X ball D e V y I y X ball D e y V
41 40 3ad2antl3 φ e + X ball D e V y I y X ball D e y V
42 41 reximdva φ e + X ball D e V y I y X ball D e y I y V
43 38 42 mpd φ e + X ball D e V y I y V
44 43 3exp φ e + X ball D e V y I y V
45 44 rexlimdv φ e + X ball D e V y I y V
46 23 45 mpd φ y I y V