Metamath Proof Explorer


Theorem qndenserrnopnlem

Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses qndenserrnopnlem.i φIFin
qndenserrnopnlem.j J=TopOpenmsup
qndenserrnopnlem.v φVJ
qndenserrnopnlem.x φXV
qndenserrnopnlem.d D=distmsup
Assertion qndenserrnopnlem φyIyV

Proof

Step Hyp Ref Expression
1 qndenserrnopnlem.i φIFin
2 qndenserrnopnlem.j J=TopOpenmsup
3 qndenserrnopnlem.v φVJ
4 qndenserrnopnlem.x φXV
5 qndenserrnopnlem.d D=distmsup
6 5 rrxmetfi IFinDMetI
7 1 6 syl φDMetI
8 metxmet DMetID∞MetI
9 7 8 syl φD∞MetI
10 3 2 eleqtrdi φVTopOpenmsup
11 1 rrxtopnfi φTopOpenmsup=MetOpenfI,gIkIfkgk2
12 5 a1i φD=distmsup
13 eqid msup=msup
14 eqid I=I
15 13 14 rrxdsfi IFindistmsup=fI,gIkIfkgk2
16 1 15 syl φdistmsup=fI,gIkIfkgk2
17 12 16 eqtr2d φfI,gIkIfkgk2=D
18 17 fveq2d φMetOpenfI,gIkIfkgk2=MetOpenD
19 11 18 eqtrd φTopOpenmsup=MetOpenD
20 10 19 eleqtrd φVMetOpenD
21 eqid MetOpenD=MetOpenD
22 21 mopni2 D∞MetIVMetOpenDXVe+XballDeV
23 9 20 4 22 syl3anc φe+XballDeV
24 1 3ad2ant1 φe+XballDeVIFin
25 rrxtps IFinmsupTopSp
26 1 25 syl φmsupTopSp
27 eqid Basemsup=Basemsup
28 27 2 istps msupTopSpJTopOnBasemsup
29 26 28 sylib φJTopOnBasemsup
30 1 13 27 rrxbasefi φBasemsup=I
31 30 fveq2d φTopOnBasemsup=TopOnI
32 29 31 eleqtrd φJTopOnI
33 toponss JTopOnIVJVI
34 32 3 33 syl2anc φVI
35 34 4 sseldd φXI
36 35 3ad2ant1 φe+XballDeVXI
37 simp2 φe+XballDeVe+
38 24 36 5 37 qndenserrnbl φe+XballDeVyIyXballDe
39 ssel XballDeVyXballDeyV
40 39 adantr XballDeVyIyXballDeyV
41 40 3ad2antl3 φe+XballDeVyIyXballDeyV
42 41 reximdva φe+XballDeVyIyXballDeyIyV
43 38 42 mpd φe+XballDeVyIyV
44 43 3exp φe+XballDeVyIyV
45 44 rexlimdv φe+XballDeVyIyV
46 23 45 mpd φyIyV