Step |
Hyp |
Ref |
Expression |
1 |
|
qndenserrnopnlem.i |
|- ( ph -> I e. Fin ) |
2 |
|
qndenserrnopnlem.j |
|- J = ( TopOpen ` ( RR^ ` I ) ) |
3 |
|
qndenserrnopnlem.v |
|- ( ph -> V e. J ) |
4 |
|
qndenserrnopnlem.x |
|- ( ph -> X e. V ) |
5 |
|
qndenserrnopnlem.d |
|- D = ( dist ` ( RR^ ` I ) ) |
6 |
5
|
rrxmetfi |
|- ( I e. Fin -> D e. ( Met ` ( RR ^m I ) ) ) |
7 |
1 6
|
syl |
|- ( ph -> D e. ( Met ` ( RR ^m I ) ) ) |
8 |
|
metxmet |
|- ( D e. ( Met ` ( RR ^m I ) ) -> D e. ( *Met ` ( RR ^m I ) ) ) |
9 |
7 8
|
syl |
|- ( ph -> D e. ( *Met ` ( RR ^m I ) ) ) |
10 |
3 2
|
eleqtrdi |
|- ( ph -> V e. ( TopOpen ` ( RR^ ` I ) ) ) |
11 |
1
|
rrxtopnfi |
|- ( ph -> ( TopOpen ` ( RR^ ` I ) ) = ( MetOpen ` ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) |
12 |
5
|
a1i |
|- ( ph -> D = ( dist ` ( RR^ ` I ) ) ) |
13 |
|
eqid |
|- ( RR^ ` I ) = ( RR^ ` I ) |
14 |
|
eqid |
|- ( RR ^m I ) = ( RR ^m I ) |
15 |
13 14
|
rrxdsfi |
|- ( I e. Fin -> ( dist ` ( RR^ ` I ) ) = ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
16 |
1 15
|
syl |
|- ( ph -> ( dist ` ( RR^ ` I ) ) = ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
17 |
12 16
|
eqtr2d |
|- ( ph -> ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = D ) |
18 |
17
|
fveq2d |
|- ( ph -> ( MetOpen ` ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) = ( MetOpen ` D ) ) |
19 |
11 18
|
eqtrd |
|- ( ph -> ( TopOpen ` ( RR^ ` I ) ) = ( MetOpen ` D ) ) |
20 |
10 19
|
eleqtrd |
|- ( ph -> V e. ( MetOpen ` D ) ) |
21 |
|
eqid |
|- ( MetOpen ` D ) = ( MetOpen ` D ) |
22 |
21
|
mopni2 |
|- ( ( D e. ( *Met ` ( RR ^m I ) ) /\ V e. ( MetOpen ` D ) /\ X e. V ) -> E. e e. RR+ ( X ( ball ` D ) e ) C_ V ) |
23 |
9 20 4 22
|
syl3anc |
|- ( ph -> E. e e. RR+ ( X ( ball ` D ) e ) C_ V ) |
24 |
1
|
3ad2ant1 |
|- ( ( ph /\ e e. RR+ /\ ( X ( ball ` D ) e ) C_ V ) -> I e. Fin ) |
25 |
|
rrxtps |
|- ( I e. Fin -> ( RR^ ` I ) e. TopSp ) |
26 |
1 25
|
syl |
|- ( ph -> ( RR^ ` I ) e. TopSp ) |
27 |
|
eqid |
|- ( Base ` ( RR^ ` I ) ) = ( Base ` ( RR^ ` I ) ) |
28 |
27 2
|
istps |
|- ( ( RR^ ` I ) e. TopSp <-> J e. ( TopOn ` ( Base ` ( RR^ ` I ) ) ) ) |
29 |
26 28
|
sylib |
|- ( ph -> J e. ( TopOn ` ( Base ` ( RR^ ` I ) ) ) ) |
30 |
1 13 27
|
rrxbasefi |
|- ( ph -> ( Base ` ( RR^ ` I ) ) = ( RR ^m I ) ) |
31 |
30
|
fveq2d |
|- ( ph -> ( TopOn ` ( Base ` ( RR^ ` I ) ) ) = ( TopOn ` ( RR ^m I ) ) ) |
32 |
29 31
|
eleqtrd |
|- ( ph -> J e. ( TopOn ` ( RR ^m I ) ) ) |
33 |
|
toponss |
|- ( ( J e. ( TopOn ` ( RR ^m I ) ) /\ V e. J ) -> V C_ ( RR ^m I ) ) |
34 |
32 3 33
|
syl2anc |
|- ( ph -> V C_ ( RR ^m I ) ) |
35 |
34 4
|
sseldd |
|- ( ph -> X e. ( RR ^m I ) ) |
36 |
35
|
3ad2ant1 |
|- ( ( ph /\ e e. RR+ /\ ( X ( ball ` D ) e ) C_ V ) -> X e. ( RR ^m I ) ) |
37 |
|
simp2 |
|- ( ( ph /\ e e. RR+ /\ ( X ( ball ` D ) e ) C_ V ) -> e e. RR+ ) |
38 |
24 36 5 37
|
qndenserrnbl |
|- ( ( ph /\ e e. RR+ /\ ( X ( ball ` D ) e ) C_ V ) -> E. y e. ( QQ ^m I ) y e. ( X ( ball ` D ) e ) ) |
39 |
|
ssel |
|- ( ( X ( ball ` D ) e ) C_ V -> ( y e. ( X ( ball ` D ) e ) -> y e. V ) ) |
40 |
39
|
adantr |
|- ( ( ( X ( ball ` D ) e ) C_ V /\ y e. ( QQ ^m I ) ) -> ( y e. ( X ( ball ` D ) e ) -> y e. V ) ) |
41 |
40
|
3ad2antl3 |
|- ( ( ( ph /\ e e. RR+ /\ ( X ( ball ` D ) e ) C_ V ) /\ y e. ( QQ ^m I ) ) -> ( y e. ( X ( ball ` D ) e ) -> y e. V ) ) |
42 |
41
|
reximdva |
|- ( ( ph /\ e e. RR+ /\ ( X ( ball ` D ) e ) C_ V ) -> ( E. y e. ( QQ ^m I ) y e. ( X ( ball ` D ) e ) -> E. y e. ( QQ ^m I ) y e. V ) ) |
43 |
38 42
|
mpd |
|- ( ( ph /\ e e. RR+ /\ ( X ( ball ` D ) e ) C_ V ) -> E. y e. ( QQ ^m I ) y e. V ) |
44 |
43
|
3exp |
|- ( ph -> ( e e. RR+ -> ( ( X ( ball ` D ) e ) C_ V -> E. y e. ( QQ ^m I ) y e. V ) ) ) |
45 |
44
|
rexlimdv |
|- ( ph -> ( E. e e. RR+ ( X ( ball ` D ) e ) C_ V -> E. y e. ( QQ ^m I ) y e. V ) ) |
46 |
23 45
|
mpd |
|- ( ph -> E. y e. ( QQ ^m I ) y e. V ) |