| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qndenserrnopnlem.i |  |-  ( ph -> I e. Fin ) | 
						
							| 2 |  | qndenserrnopnlem.j |  |-  J = ( TopOpen ` ( RR^ ` I ) ) | 
						
							| 3 |  | qndenserrnopnlem.v |  |-  ( ph -> V e. J ) | 
						
							| 4 |  | qndenserrnopnlem.x |  |-  ( ph -> X e. V ) | 
						
							| 5 |  | qndenserrnopnlem.d |  |-  D = ( dist ` ( RR^ ` I ) ) | 
						
							| 6 | 5 | rrxmetfi |  |-  ( I e. Fin -> D e. ( Met ` ( RR ^m I ) ) ) | 
						
							| 7 | 1 6 | syl |  |-  ( ph -> D e. ( Met ` ( RR ^m I ) ) ) | 
						
							| 8 |  | metxmet |  |-  ( D e. ( Met ` ( RR ^m I ) ) -> D e. ( *Met ` ( RR ^m I ) ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ph -> D e. ( *Met ` ( RR ^m I ) ) ) | 
						
							| 10 | 3 2 | eleqtrdi |  |-  ( ph -> V e. ( TopOpen ` ( RR^ ` I ) ) ) | 
						
							| 11 | 1 | rrxtopnfi |  |-  ( ph -> ( TopOpen ` ( RR^ ` I ) ) = ( MetOpen ` ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) | 
						
							| 12 | 5 | a1i |  |-  ( ph -> D = ( dist ` ( RR^ ` I ) ) ) | 
						
							| 13 |  | eqid |  |-  ( RR^ ` I ) = ( RR^ ` I ) | 
						
							| 14 |  | eqid |  |-  ( RR ^m I ) = ( RR ^m I ) | 
						
							| 15 | 13 14 | rrxdsfi |  |-  ( I e. Fin -> ( dist ` ( RR^ ` I ) ) = ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) | 
						
							| 16 | 1 15 | syl |  |-  ( ph -> ( dist ` ( RR^ ` I ) ) = ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) | 
						
							| 17 | 12 16 | eqtr2d |  |-  ( ph -> ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = D ) | 
						
							| 18 | 17 | fveq2d |  |-  ( ph -> ( MetOpen ` ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) = ( MetOpen ` D ) ) | 
						
							| 19 | 11 18 | eqtrd |  |-  ( ph -> ( TopOpen ` ( RR^ ` I ) ) = ( MetOpen ` D ) ) | 
						
							| 20 | 10 19 | eleqtrd |  |-  ( ph -> V e. ( MetOpen ` D ) ) | 
						
							| 21 |  | eqid |  |-  ( MetOpen ` D ) = ( MetOpen ` D ) | 
						
							| 22 | 21 | mopni2 |  |-  ( ( D e. ( *Met ` ( RR ^m I ) ) /\ V e. ( MetOpen ` D ) /\ X e. V ) -> E. e e. RR+ ( X ( ball ` D ) e ) C_ V ) | 
						
							| 23 | 9 20 4 22 | syl3anc |  |-  ( ph -> E. e e. RR+ ( X ( ball ` D ) e ) C_ V ) | 
						
							| 24 | 1 | 3ad2ant1 |  |-  ( ( ph /\ e e. RR+ /\ ( X ( ball ` D ) e ) C_ V ) -> I e. Fin ) | 
						
							| 25 |  | rrxtps |  |-  ( I e. Fin -> ( RR^ ` I ) e. TopSp ) | 
						
							| 26 | 1 25 | syl |  |-  ( ph -> ( RR^ ` I ) e. TopSp ) | 
						
							| 27 |  | eqid |  |-  ( Base ` ( RR^ ` I ) ) = ( Base ` ( RR^ ` I ) ) | 
						
							| 28 | 27 2 | istps |  |-  ( ( RR^ ` I ) e. TopSp <-> J e. ( TopOn ` ( Base ` ( RR^ ` I ) ) ) ) | 
						
							| 29 | 26 28 | sylib |  |-  ( ph -> J e. ( TopOn ` ( Base ` ( RR^ ` I ) ) ) ) | 
						
							| 30 | 1 13 27 | rrxbasefi |  |-  ( ph -> ( Base ` ( RR^ ` I ) ) = ( RR ^m I ) ) | 
						
							| 31 | 30 | fveq2d |  |-  ( ph -> ( TopOn ` ( Base ` ( RR^ ` I ) ) ) = ( TopOn ` ( RR ^m I ) ) ) | 
						
							| 32 | 29 31 | eleqtrd |  |-  ( ph -> J e. ( TopOn ` ( RR ^m I ) ) ) | 
						
							| 33 |  | toponss |  |-  ( ( J e. ( TopOn ` ( RR ^m I ) ) /\ V e. J ) -> V C_ ( RR ^m I ) ) | 
						
							| 34 | 32 3 33 | syl2anc |  |-  ( ph -> V C_ ( RR ^m I ) ) | 
						
							| 35 | 34 4 | sseldd |  |-  ( ph -> X e. ( RR ^m I ) ) | 
						
							| 36 | 35 | 3ad2ant1 |  |-  ( ( ph /\ e e. RR+ /\ ( X ( ball ` D ) e ) C_ V ) -> X e. ( RR ^m I ) ) | 
						
							| 37 |  | simp2 |  |-  ( ( ph /\ e e. RR+ /\ ( X ( ball ` D ) e ) C_ V ) -> e e. RR+ ) | 
						
							| 38 | 24 36 5 37 | qndenserrnbl |  |-  ( ( ph /\ e e. RR+ /\ ( X ( ball ` D ) e ) C_ V ) -> E. y e. ( QQ ^m I ) y e. ( X ( ball ` D ) e ) ) | 
						
							| 39 |  | ssel |  |-  ( ( X ( ball ` D ) e ) C_ V -> ( y e. ( X ( ball ` D ) e ) -> y e. V ) ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ( X ( ball ` D ) e ) C_ V /\ y e. ( QQ ^m I ) ) -> ( y e. ( X ( ball ` D ) e ) -> y e. V ) ) | 
						
							| 41 | 40 | 3ad2antl3 |  |-  ( ( ( ph /\ e e. RR+ /\ ( X ( ball ` D ) e ) C_ V ) /\ y e. ( QQ ^m I ) ) -> ( y e. ( X ( ball ` D ) e ) -> y e. V ) ) | 
						
							| 42 | 41 | reximdva |  |-  ( ( ph /\ e e. RR+ /\ ( X ( ball ` D ) e ) C_ V ) -> ( E. y e. ( QQ ^m I ) y e. ( X ( ball ` D ) e ) -> E. y e. ( QQ ^m I ) y e. V ) ) | 
						
							| 43 | 38 42 | mpd |  |-  ( ( ph /\ e e. RR+ /\ ( X ( ball ` D ) e ) C_ V ) -> E. y e. ( QQ ^m I ) y e. V ) | 
						
							| 44 | 43 | 3exp |  |-  ( ph -> ( e e. RR+ -> ( ( X ( ball ` D ) e ) C_ V -> E. y e. ( QQ ^m I ) y e. V ) ) ) | 
						
							| 45 | 44 | rexlimdv |  |-  ( ph -> ( E. e e. RR+ ( X ( ball ` D ) e ) C_ V -> E. y e. ( QQ ^m I ) y e. V ) ) | 
						
							| 46 | 23 45 | mpd |  |-  ( ph -> E. y e. ( QQ ^m I ) y e. V ) |