Metamath Proof Explorer


Theorem qndenserrnopn

Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses qndenserrnopn.i
|- ( ph -> I e. Fin )
qndenserrnopn.j
|- J = ( TopOpen ` ( RR^ ` I ) )
qndenserrnopn.v
|- ( ph -> V e. J )
qndenserrnopn.n
|- ( ph -> V =/= (/) )
Assertion qndenserrnopn
|- ( ph -> E. y e. ( QQ ^m I ) y e. V )

Proof

Step Hyp Ref Expression
1 qndenserrnopn.i
 |-  ( ph -> I e. Fin )
2 qndenserrnopn.j
 |-  J = ( TopOpen ` ( RR^ ` I ) )
3 qndenserrnopn.v
 |-  ( ph -> V e. J )
4 qndenserrnopn.n
 |-  ( ph -> V =/= (/) )
5 n0
 |-  ( V =/= (/) <-> E. x x e. V )
6 4 5 sylib
 |-  ( ph -> E. x x e. V )
7 1 adantr
 |-  ( ( ph /\ x e. V ) -> I e. Fin )
8 3 adantr
 |-  ( ( ph /\ x e. V ) -> V e. J )
9 simpr
 |-  ( ( ph /\ x e. V ) -> x e. V )
10 eqid
 |-  ( dist ` ( RR^ ` I ) ) = ( dist ` ( RR^ ` I ) )
11 7 2 8 9 10 qndenserrnopnlem
 |-  ( ( ph /\ x e. V ) -> E. y e. ( QQ ^m I ) y e. V )
12 11 ex
 |-  ( ph -> ( x e. V -> E. y e. ( QQ ^m I ) y e. V ) )
13 12 exlimdv
 |-  ( ph -> ( E. x x e. V -> E. y e. ( QQ ^m I ) y e. V ) )
14 6 13 mpd
 |-  ( ph -> E. y e. ( QQ ^m I ) y e. V )