Metamath Proof Explorer


Theorem qndenserrnopn

Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses qndenserrnopn.i ( 𝜑𝐼 ∈ Fin )
qndenserrnopn.j 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) )
qndenserrnopn.v ( 𝜑𝑉𝐽 )
qndenserrnopn.n ( 𝜑𝑉 ≠ ∅ )
Assertion qndenserrnopn ( 𝜑 → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦𝑉 )

Proof

Step Hyp Ref Expression
1 qndenserrnopn.i ( 𝜑𝐼 ∈ Fin )
2 qndenserrnopn.j 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) )
3 qndenserrnopn.v ( 𝜑𝑉𝐽 )
4 qndenserrnopn.n ( 𝜑𝑉 ≠ ∅ )
5 n0 ( 𝑉 ≠ ∅ ↔ ∃ 𝑥 𝑥𝑉 )
6 4 5 sylib ( 𝜑 → ∃ 𝑥 𝑥𝑉 )
7 1 adantr ( ( 𝜑𝑥𝑉 ) → 𝐼 ∈ Fin )
8 3 adantr ( ( 𝜑𝑥𝑉 ) → 𝑉𝐽 )
9 simpr ( ( 𝜑𝑥𝑉 ) → 𝑥𝑉 )
10 eqid ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) = ( dist ‘ ( ℝ^ ‘ 𝐼 ) )
11 7 2 8 9 10 qndenserrnopnlem ( ( 𝜑𝑥𝑉 ) → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦𝑉 )
12 11 ex ( 𝜑 → ( 𝑥𝑉 → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦𝑉 ) )
13 12 exlimdv ( 𝜑 → ( ∃ 𝑥 𝑥𝑉 → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦𝑉 ) )
14 6 13 mpd ( 𝜑 → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦𝑉 )