| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qndenserrnopn.i | ⊢ ( 𝜑  →  𝐼  ∈  Fin ) | 
						
							| 2 |  | qndenserrnopn.j | ⊢ 𝐽  =  ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) | 
						
							| 3 |  | qndenserrnopn.v | ⊢ ( 𝜑  →  𝑉  ∈  𝐽 ) | 
						
							| 4 |  | qndenserrnopn.n | ⊢ ( 𝜑  →  𝑉  ≠  ∅ ) | 
						
							| 5 |  | n0 | ⊢ ( 𝑉  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  𝑉 ) | 
						
							| 6 | 4 5 | sylib | ⊢ ( 𝜑  →  ∃ 𝑥 𝑥  ∈  𝑉 ) | 
						
							| 7 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  𝐼  ∈  Fin ) | 
						
							| 8 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  𝑉  ∈  𝐽 ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  𝑥  ∈  𝑉 ) | 
						
							| 10 |  | eqid | ⊢ ( dist ‘ ( ℝ^ ‘ 𝐼 ) )  =  ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | 
						
							| 11 | 7 2 8 9 10 | qndenserrnopnlem | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  𝑉 ) | 
						
							| 12 | 11 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑉  →  ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  𝑉 ) ) | 
						
							| 13 | 12 | exlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑥 𝑥  ∈  𝑉  →  ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  𝑉 ) ) | 
						
							| 14 | 6 13 | mpd | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  𝑉 ) |