Step |
Hyp |
Ref |
Expression |
1 |
|
qndenserrnopn.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
2 |
|
qndenserrnopn.j |
⊢ 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) |
3 |
|
qndenserrnopn.v |
⊢ ( 𝜑 → 𝑉 ∈ 𝐽 ) |
4 |
|
qndenserrnopn.n |
⊢ ( 𝜑 → 𝑉 ≠ ∅ ) |
5 |
|
n0 |
⊢ ( 𝑉 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑉 ) |
6 |
4 5
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ 𝑉 ) |
7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝐼 ∈ Fin ) |
8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑉 ∈ 𝐽 ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) |
10 |
|
eqid |
⊢ ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) |
11 |
7 2 8 9 10
|
qndenserrnopnlem |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ 𝑉 ) |
12 |
11
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ 𝑉 ) ) |
13 |
12
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 𝑥 ∈ 𝑉 → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ 𝑉 ) ) |
14 |
6 13
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ 𝑉 ) |