Step |
Hyp |
Ref |
Expression |
1 |
|
qndenserrn.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
2 |
|
qndenserrn.j |
⊢ 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) |
3 |
2
|
rrxtop |
⊢ ( 𝐼 ∈ Fin → 𝐽 ∈ Top ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
5 |
|
reex |
⊢ ℝ ∈ V |
6 |
|
qssre |
⊢ ℚ ⊆ ℝ |
7 |
|
mapss |
⊢ ( ( ℝ ∈ V ∧ ℚ ⊆ ℝ ) → ( ℚ ↑m 𝐼 ) ⊆ ( ℝ ↑m 𝐼 ) ) |
8 |
5 6 7
|
mp2an |
⊢ ( ℚ ↑m 𝐼 ) ⊆ ( ℝ ↑m 𝐼 ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → ( ℚ ↑m 𝐼 ) ⊆ ( ℝ ↑m 𝐼 ) ) |
10 |
|
eqid |
⊢ ( ℝ^ ‘ 𝐼 ) = ( ℝ^ ‘ 𝐼 ) |
11 |
|
eqid |
⊢ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) |
12 |
1 10 11
|
rrxbasefi |
⊢ ( 𝜑 → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( ℝ ↑m 𝐼 ) ) |
13 |
12
|
eqcomd |
⊢ ( 𝜑 → ( ℝ ↑m 𝐼 ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
14 |
|
rrxtps |
⊢ ( 𝐼 ∈ Fin → ( ℝ^ ‘ 𝐼 ) ∈ TopSp ) |
15 |
|
eqid |
⊢ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) |
16 |
11 15
|
tpsuni |
⊢ ( ( ℝ^ ‘ 𝐼 ) ∈ TopSp → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ∪ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
17 |
1 14 16
|
3syl |
⊢ ( 𝜑 → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ∪ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
18 |
2
|
unieqi |
⊢ ∪ 𝐽 = ∪ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) |
19 |
18
|
eqcomi |
⊢ ∪ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) = ∪ 𝐽 |
20 |
19
|
a1i |
⊢ ( 𝜑 → ∪ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) = ∪ 𝐽 ) |
21 |
13 17 20
|
3eqtrd |
⊢ ( 𝜑 → ( ℝ ↑m 𝐼 ) = ∪ 𝐽 ) |
22 |
9 21
|
sseqtrd |
⊢ ( 𝜑 → ( ℚ ↑m 𝐼 ) ⊆ ∪ 𝐽 ) |
23 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
24 |
23
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ ( ℚ ↑m 𝐼 ) ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( ℚ ↑m 𝐼 ) ) ⊆ ∪ 𝐽 ) |
25 |
4 22 24
|
syl2anc |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( ℚ ↑m 𝐼 ) ) ⊆ ∪ 𝐽 ) |
26 |
21
|
eqcomd |
⊢ ( 𝜑 → ∪ 𝐽 = ( ℝ ↑m 𝐼 ) ) |
27 |
25 26
|
sseqtrd |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( ℚ ↑m 𝐼 ) ) ⊆ ( ℝ ↑m 𝐼 ) ) |
28 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → 𝐼 ∈ Fin ) |
29 |
|
id |
⊢ ( 𝑣 ∈ 𝐽 → 𝑣 ∈ 𝐽 ) |
30 |
29 2
|
eleqtrdi |
⊢ ( 𝑣 ∈ 𝐽 → 𝑣 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
31 |
30
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → 𝑣 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
32 |
|
ne0i |
⊢ ( 𝑥 ∈ 𝑣 → 𝑣 ≠ ∅ ) |
33 |
32
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → 𝑣 ≠ ∅ ) |
34 |
28 15 31 33
|
qndenserrnopn |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ 𝑣 ) |
35 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ 𝑣 ↔ ∃ 𝑦 ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ 𝑣 ) ) |
36 |
34 35
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → ∃ 𝑦 ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ 𝑣 ) ) |
37 |
|
simpr |
⊢ ( ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ 𝑣 ) → 𝑦 ∈ 𝑣 ) |
38 |
|
simpl |
⊢ ( ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ 𝑣 ) → 𝑦 ∈ ( ℚ ↑m 𝐼 ) ) |
39 |
37 38
|
elind |
⊢ ( ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ 𝑣 ) → 𝑦 ∈ ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ) |
40 |
39
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → ( ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ 𝑣 ) → 𝑦 ∈ ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ) ) |
41 |
40
|
eximdv |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → ( ∃ 𝑦 ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ 𝑣 ) → ∃ 𝑦 𝑦 ∈ ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ) ) |
42 |
36 41
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → ∃ 𝑦 𝑦 ∈ ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ) |
43 |
|
n0 |
⊢ ( ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ) |
44 |
42 43
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ≠ ∅ ) |
45 |
44
|
ex |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑣 → ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ≠ ∅ ) ) |
46 |
45
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑣 → ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ≠ ∅ ) ) |
47 |
46
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) → ∀ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 → ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ≠ ∅ ) ) |
48 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) → 𝐽 ∈ Top ) |
49 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) → ( ℚ ↑m 𝐼 ) ⊆ ∪ 𝐽 ) |
50 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) → 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) |
51 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) → ( ℝ ↑m 𝐼 ) = ∪ 𝐽 ) |
52 |
50 51
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) → 𝑥 ∈ ∪ 𝐽 ) |
53 |
23
|
elcls |
⊢ ( ( 𝐽 ∈ Top ∧ ( ℚ ↑m 𝐼 ) ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ℚ ↑m 𝐼 ) ) ↔ ∀ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 → ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ≠ ∅ ) ) ) |
54 |
48 49 52 53
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ℚ ↑m 𝐼 ) ) ↔ ∀ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 → ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ≠ ∅ ) ) ) |
55 |
47 54
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ℚ ↑m 𝐼 ) ) ) |
56 |
27 55
|
eqelssd |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( ℚ ↑m 𝐼 ) ) = ( ℝ ↑m 𝐼 ) ) |