| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qndenserrn.i | ⊢ ( 𝜑  →  𝐼  ∈  Fin ) | 
						
							| 2 |  | qndenserrn.j | ⊢ 𝐽  =  ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) | 
						
							| 3 | 2 | rrxtop | ⊢ ( 𝐼  ∈  Fin  →  𝐽  ∈  Top ) | 
						
							| 4 | 1 3 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 5 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 6 |  | qssre | ⊢ ℚ  ⊆  ℝ | 
						
							| 7 |  | mapss | ⊢ ( ( ℝ  ∈  V  ∧  ℚ  ⊆  ℝ )  →  ( ℚ  ↑m  𝐼 )  ⊆  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 8 | 5 6 7 | mp2an | ⊢ ( ℚ  ↑m  𝐼 )  ⊆  ( ℝ  ↑m  𝐼 ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ( ℚ  ↑m  𝐼 )  ⊆  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 10 |  | eqid | ⊢ ( ℝ^ ‘ 𝐼 )  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ ( ℝ^ ‘ 𝐼 ) )  =  ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) | 
						
							| 12 | 1 10 11 | rrxbasefi | ⊢ ( 𝜑  →  ( Base ‘ ( ℝ^ ‘ 𝐼 ) )  =  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( 𝜑  →  ( ℝ  ↑m  𝐼 )  =  ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) | 
						
							| 14 |  | rrxtps | ⊢ ( 𝐼  ∈  Fin  →  ( ℝ^ ‘ 𝐼 )  ∈  TopSp ) | 
						
							| 15 |  | eqid | ⊢ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) )  =  ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) | 
						
							| 16 | 11 15 | tpsuni | ⊢ ( ( ℝ^ ‘ 𝐼 )  ∈  TopSp  →  ( Base ‘ ( ℝ^ ‘ 𝐼 ) )  =  ∪  ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) ) | 
						
							| 17 | 1 14 16 | 3syl | ⊢ ( 𝜑  →  ( Base ‘ ( ℝ^ ‘ 𝐼 ) )  =  ∪  ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) ) | 
						
							| 18 | 2 | unieqi | ⊢ ∪  𝐽  =  ∪  ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) | 
						
							| 19 | 18 | eqcomi | ⊢ ∪  ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) )  =  ∪  𝐽 | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →  ∪  ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) )  =  ∪  𝐽 ) | 
						
							| 21 | 13 17 20 | 3eqtrd | ⊢ ( 𝜑  →  ( ℝ  ↑m  𝐼 )  =  ∪  𝐽 ) | 
						
							| 22 | 9 21 | sseqtrd | ⊢ ( 𝜑  →  ( ℚ  ↑m  𝐼 )  ⊆  ∪  𝐽 ) | 
						
							| 23 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 24 | 23 | clsss3 | ⊢ ( ( 𝐽  ∈  Top  ∧  ( ℚ  ↑m  𝐼 )  ⊆  ∪  𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ ( ℚ  ↑m  𝐼 ) )  ⊆  ∪  𝐽 ) | 
						
							| 25 | 4 22 24 | syl2anc | ⊢ ( 𝜑  →  ( ( cls ‘ 𝐽 ) ‘ ( ℚ  ↑m  𝐼 ) )  ⊆  ∪  𝐽 ) | 
						
							| 26 | 21 | eqcomd | ⊢ ( 𝜑  →  ∪  𝐽  =  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 27 | 25 26 | sseqtrd | ⊢ ( 𝜑  →  ( ( cls ‘ 𝐽 ) ‘ ( ℚ  ↑m  𝐼 ) )  ⊆  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 28 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  𝐽 )  ∧  𝑥  ∈  𝑣 )  →  𝐼  ∈  Fin ) | 
						
							| 29 |  | id | ⊢ ( 𝑣  ∈  𝐽  →  𝑣  ∈  𝐽 ) | 
						
							| 30 | 29 2 | eleqtrdi | ⊢ ( 𝑣  ∈  𝐽  →  𝑣  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) ) | 
						
							| 31 | 30 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  𝐽 )  ∧  𝑥  ∈  𝑣 )  →  𝑣  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) ) | 
						
							| 32 |  | ne0i | ⊢ ( 𝑥  ∈  𝑣  →  𝑣  ≠  ∅ ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  𝐽 )  ∧  𝑥  ∈  𝑣 )  →  𝑣  ≠  ∅ ) | 
						
							| 34 | 28 15 31 33 | qndenserrnopn | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  𝐽 )  ∧  𝑥  ∈  𝑣 )  →  ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  𝑣 ) | 
						
							| 35 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  𝑣  ↔  ∃ 𝑦 ( 𝑦  ∈  ( ℚ  ↑m  𝐼 )  ∧  𝑦  ∈  𝑣 ) ) | 
						
							| 36 | 34 35 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  𝐽 )  ∧  𝑥  ∈  𝑣 )  →  ∃ 𝑦 ( 𝑦  ∈  ( ℚ  ↑m  𝐼 )  ∧  𝑦  ∈  𝑣 ) ) | 
						
							| 37 |  | simpr | ⊢ ( ( 𝑦  ∈  ( ℚ  ↑m  𝐼 )  ∧  𝑦  ∈  𝑣 )  →  𝑦  ∈  𝑣 ) | 
						
							| 38 |  | simpl | ⊢ ( ( 𝑦  ∈  ( ℚ  ↑m  𝐼 )  ∧  𝑦  ∈  𝑣 )  →  𝑦  ∈  ( ℚ  ↑m  𝐼 ) ) | 
						
							| 39 | 37 38 | elind | ⊢ ( ( 𝑦  ∈  ( ℚ  ↑m  𝐼 )  ∧  𝑦  ∈  𝑣 )  →  𝑦  ∈  ( 𝑣  ∩  ( ℚ  ↑m  𝐼 ) ) ) | 
						
							| 40 | 39 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  𝐽 )  ∧  𝑥  ∈  𝑣 )  →  ( ( 𝑦  ∈  ( ℚ  ↑m  𝐼 )  ∧  𝑦  ∈  𝑣 )  →  𝑦  ∈  ( 𝑣  ∩  ( ℚ  ↑m  𝐼 ) ) ) ) | 
						
							| 41 | 40 | eximdv | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  𝐽 )  ∧  𝑥  ∈  𝑣 )  →  ( ∃ 𝑦 ( 𝑦  ∈  ( ℚ  ↑m  𝐼 )  ∧  𝑦  ∈  𝑣 )  →  ∃ 𝑦 𝑦  ∈  ( 𝑣  ∩  ( ℚ  ↑m  𝐼 ) ) ) ) | 
						
							| 42 | 36 41 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  𝐽 )  ∧  𝑥  ∈  𝑣 )  →  ∃ 𝑦 𝑦  ∈  ( 𝑣  ∩  ( ℚ  ↑m  𝐼 ) ) ) | 
						
							| 43 |  | n0 | ⊢ ( ( 𝑣  ∩  ( ℚ  ↑m  𝐼 ) )  ≠  ∅  ↔  ∃ 𝑦 𝑦  ∈  ( 𝑣  ∩  ( ℚ  ↑m  𝐼 ) ) ) | 
						
							| 44 | 42 43 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  𝐽 )  ∧  𝑥  ∈  𝑣 )  →  ( 𝑣  ∩  ( ℚ  ↑m  𝐼 ) )  ≠  ∅ ) | 
						
							| 45 | 44 | ex | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝐽 )  →  ( 𝑥  ∈  𝑣  →  ( 𝑣  ∩  ( ℚ  ↑m  𝐼 ) )  ≠  ∅ ) ) | 
						
							| 46 | 45 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ↑m  𝐼 ) )  ∧  𝑣  ∈  𝐽 )  →  ( 𝑥  ∈  𝑣  →  ( 𝑣  ∩  ( ℚ  ↑m  𝐼 ) )  ≠  ∅ ) ) | 
						
							| 47 | 46 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ↑m  𝐼 ) )  →  ∀ 𝑣  ∈  𝐽 ( 𝑥  ∈  𝑣  →  ( 𝑣  ∩  ( ℚ  ↑m  𝐼 ) )  ≠  ∅ ) ) | 
						
							| 48 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ↑m  𝐼 ) )  →  𝐽  ∈  Top ) | 
						
							| 49 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ↑m  𝐼 ) )  →  ( ℚ  ↑m  𝐼 )  ⊆  ∪  𝐽 ) | 
						
							| 50 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ↑m  𝐼 ) )  →  𝑥  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 51 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ↑m  𝐼 ) )  →  ( ℝ  ↑m  𝐼 )  =  ∪  𝐽 ) | 
						
							| 52 | 50 51 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ↑m  𝐼 ) )  →  𝑥  ∈  ∪  𝐽 ) | 
						
							| 53 | 23 | elcls | ⊢ ( ( 𝐽  ∈  Top  ∧  ( ℚ  ↑m  𝐼 )  ⊆  ∪  𝐽  ∧  𝑥  ∈  ∪  𝐽 )  →  ( 𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ ( ℚ  ↑m  𝐼 ) )  ↔  ∀ 𝑣  ∈  𝐽 ( 𝑥  ∈  𝑣  →  ( 𝑣  ∩  ( ℚ  ↑m  𝐼 ) )  ≠  ∅ ) ) ) | 
						
							| 54 | 48 49 52 53 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ↑m  𝐼 ) )  →  ( 𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ ( ℚ  ↑m  𝐼 ) )  ↔  ∀ 𝑣  ∈  𝐽 ( 𝑥  ∈  𝑣  →  ( 𝑣  ∩  ( ℚ  ↑m  𝐼 ) )  ≠  ∅ ) ) ) | 
						
							| 55 | 47 54 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ↑m  𝐼 ) )  →  𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ ( ℚ  ↑m  𝐼 ) ) ) | 
						
							| 56 | 27 55 | eqelssd | ⊢ ( 𝜑  →  ( ( cls ‘ 𝐽 ) ‘ ( ℚ  ↑m  𝐼 ) )  =  ( ℝ  ↑m  𝐼 ) ) |