| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qndenserrn.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 2 |
|
qndenserrn.j |
⊢ 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) |
| 3 |
2
|
rrxtop |
⊢ ( 𝐼 ∈ Fin → 𝐽 ∈ Top ) |
| 4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 5 |
|
reex |
⊢ ℝ ∈ V |
| 6 |
|
qssre |
⊢ ℚ ⊆ ℝ |
| 7 |
|
mapss |
⊢ ( ( ℝ ∈ V ∧ ℚ ⊆ ℝ ) → ( ℚ ↑m 𝐼 ) ⊆ ( ℝ ↑m 𝐼 ) ) |
| 8 |
5 6 7
|
mp2an |
⊢ ( ℚ ↑m 𝐼 ) ⊆ ( ℝ ↑m 𝐼 ) |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ( ℚ ↑m 𝐼 ) ⊆ ( ℝ ↑m 𝐼 ) ) |
| 10 |
|
eqid |
⊢ ( ℝ^ ‘ 𝐼 ) = ( ℝ^ ‘ 𝐼 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) |
| 12 |
1 10 11
|
rrxbasefi |
⊢ ( 𝜑 → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( ℝ ↑m 𝐼 ) ) |
| 13 |
12
|
eqcomd |
⊢ ( 𝜑 → ( ℝ ↑m 𝐼 ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
| 14 |
|
rrxtps |
⊢ ( 𝐼 ∈ Fin → ( ℝ^ ‘ 𝐼 ) ∈ TopSp ) |
| 15 |
|
eqid |
⊢ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) |
| 16 |
11 15
|
tpsuni |
⊢ ( ( ℝ^ ‘ 𝐼 ) ∈ TopSp → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ∪ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
| 17 |
1 14 16
|
3syl |
⊢ ( 𝜑 → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ∪ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
| 18 |
2
|
unieqi |
⊢ ∪ 𝐽 = ∪ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) |
| 19 |
18
|
eqcomi |
⊢ ∪ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) = ∪ 𝐽 |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → ∪ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) = ∪ 𝐽 ) |
| 21 |
13 17 20
|
3eqtrd |
⊢ ( 𝜑 → ( ℝ ↑m 𝐼 ) = ∪ 𝐽 ) |
| 22 |
9 21
|
sseqtrd |
⊢ ( 𝜑 → ( ℚ ↑m 𝐼 ) ⊆ ∪ 𝐽 ) |
| 23 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 24 |
23
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ ( ℚ ↑m 𝐼 ) ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( ℚ ↑m 𝐼 ) ) ⊆ ∪ 𝐽 ) |
| 25 |
4 22 24
|
syl2anc |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( ℚ ↑m 𝐼 ) ) ⊆ ∪ 𝐽 ) |
| 26 |
21
|
eqcomd |
⊢ ( 𝜑 → ∪ 𝐽 = ( ℝ ↑m 𝐼 ) ) |
| 27 |
25 26
|
sseqtrd |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( ℚ ↑m 𝐼 ) ) ⊆ ( ℝ ↑m 𝐼 ) ) |
| 28 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → 𝐼 ∈ Fin ) |
| 29 |
|
id |
⊢ ( 𝑣 ∈ 𝐽 → 𝑣 ∈ 𝐽 ) |
| 30 |
29 2
|
eleqtrdi |
⊢ ( 𝑣 ∈ 𝐽 → 𝑣 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
| 31 |
30
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → 𝑣 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
| 32 |
|
ne0i |
⊢ ( 𝑥 ∈ 𝑣 → 𝑣 ≠ ∅ ) |
| 33 |
32
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → 𝑣 ≠ ∅ ) |
| 34 |
28 15 31 33
|
qndenserrnopn |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ 𝑣 ) |
| 35 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ 𝑣 ↔ ∃ 𝑦 ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ 𝑣 ) ) |
| 36 |
34 35
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → ∃ 𝑦 ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ 𝑣 ) ) |
| 37 |
|
simpr |
⊢ ( ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ 𝑣 ) → 𝑦 ∈ 𝑣 ) |
| 38 |
|
simpl |
⊢ ( ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ 𝑣 ) → 𝑦 ∈ ( ℚ ↑m 𝐼 ) ) |
| 39 |
37 38
|
elind |
⊢ ( ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ 𝑣 ) → 𝑦 ∈ ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ) |
| 40 |
39
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → ( ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ 𝑣 ) → 𝑦 ∈ ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ) ) |
| 41 |
40
|
eximdv |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → ( ∃ 𝑦 ( 𝑦 ∈ ( ℚ ↑m 𝐼 ) ∧ 𝑦 ∈ 𝑣 ) → ∃ 𝑦 𝑦 ∈ ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ) ) |
| 42 |
36 41
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → ∃ 𝑦 𝑦 ∈ ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ) |
| 43 |
|
n0 |
⊢ ( ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ) |
| 44 |
42 43
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑣 ) → ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ≠ ∅ ) |
| 45 |
44
|
ex |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑣 → ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ≠ ∅ ) ) |
| 46 |
45
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑣 → ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ≠ ∅ ) ) |
| 47 |
46
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) → ∀ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 → ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ≠ ∅ ) ) |
| 48 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) → 𝐽 ∈ Top ) |
| 49 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) → ( ℚ ↑m 𝐼 ) ⊆ ∪ 𝐽 ) |
| 50 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) → 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) |
| 51 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) → ( ℝ ↑m 𝐼 ) = ∪ 𝐽 ) |
| 52 |
50 51
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) → 𝑥 ∈ ∪ 𝐽 ) |
| 53 |
23
|
elcls |
⊢ ( ( 𝐽 ∈ Top ∧ ( ℚ ↑m 𝐼 ) ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ℚ ↑m 𝐼 ) ) ↔ ∀ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 → ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ≠ ∅ ) ) ) |
| 54 |
48 49 52 53
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ℚ ↑m 𝐼 ) ) ↔ ∀ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 → ( 𝑣 ∩ ( ℚ ↑m 𝐼 ) ) ≠ ∅ ) ) ) |
| 55 |
47 54
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ↑m 𝐼 ) ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ℚ ↑m 𝐼 ) ) ) |
| 56 |
27 55
|
eqelssd |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( ℚ ↑m 𝐼 ) ) = ( ℝ ↑m 𝐼 ) ) |