Metamath Proof Explorer


Theorem rrxsnicc

Description: A multidimensional singleton expressed as a multidimensional closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypothesis rrxsnicc.1 ( 𝜑𝐴 ∈ ( ℝ ↑m 𝑋 ) )
Assertion rrxsnicc ( 𝜑X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) = { 𝐴 } )

Proof

Step Hyp Ref Expression
1 rrxsnicc.1 ( 𝜑𝐴 ∈ ( ℝ ↑m 𝑋 ) )
2 ixpfn ( 𝑓X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) → 𝑓 Fn 𝑋 )
3 2 adantl ( ( 𝜑𝑓X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) ) → 𝑓 Fn 𝑋 )
4 elmapfn ( 𝐴 ∈ ( ℝ ↑m 𝑋 ) → 𝐴 Fn 𝑋 )
5 1 4 syl ( 𝜑𝐴 Fn 𝑋 )
6 5 adantr ( ( 𝜑𝑓X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) ) → 𝐴 Fn 𝑋 )
7 simpll ( ( ( 𝜑𝑓X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) ) ∧ 𝑗𝑋 ) → 𝜑 )
8 fveq2 ( 𝑘 = 𝑗 → ( 𝐴𝑘 ) = ( 𝐴𝑗 ) )
9 8 8 oveq12d ( 𝑘 = 𝑗 → ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) = ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) )
10 9 cbvixpv X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) = X 𝑗𝑋 ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) )
11 10 eleq2i ( 𝑓X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) ↔ 𝑓X 𝑗𝑋 ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) )
12 11 biimpi ( 𝑓X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) → 𝑓X 𝑗𝑋 ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) )
13 12 ad2antlr ( ( ( 𝜑𝑓X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) ) ∧ 𝑗𝑋 ) → 𝑓X 𝑗𝑋 ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) )
14 simpr ( ( ( 𝜑𝑓X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) ) ∧ 𝑗𝑋 ) → 𝑗𝑋 )
15 elmapi ( 𝐴 ∈ ( ℝ ↑m 𝑋 ) → 𝐴 : 𝑋 ⟶ ℝ )
16 1 15 syl ( 𝜑𝐴 : 𝑋 ⟶ ℝ )
17 16 ffvelrnda ( ( 𝜑𝑗𝑋 ) → ( 𝐴𝑗 ) ∈ ℝ )
18 17 adantlr ( ( ( 𝜑𝑓X 𝑗𝑋 ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) ) ∧ 𝑗𝑋 ) → ( 𝐴𝑗 ) ∈ ℝ )
19 18 18 iccssred ( ( ( 𝜑𝑓X 𝑗𝑋 ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) ) ∧ 𝑗𝑋 ) → ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) ⊆ ℝ )
20 fvixp2 ( ( 𝑓X 𝑗𝑋 ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) ∧ 𝑗𝑋 ) → ( 𝑓𝑗 ) ∈ ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) )
21 20 adantll ( ( ( 𝜑𝑓X 𝑗𝑋 ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) ) ∧ 𝑗𝑋 ) → ( 𝑓𝑗 ) ∈ ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) )
22 19 21 sseldd ( ( ( 𝜑𝑓X 𝑗𝑋 ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) ) ∧ 𝑗𝑋 ) → ( 𝑓𝑗 ) ∈ ℝ )
23 22 rexrd ( ( ( 𝜑𝑓X 𝑗𝑋 ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) ) ∧ 𝑗𝑋 ) → ( 𝑓𝑗 ) ∈ ℝ* )
24 18 rexrd ( ( ( 𝜑𝑓X 𝑗𝑋 ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) ) ∧ 𝑗𝑋 ) → ( 𝐴𝑗 ) ∈ ℝ* )
25 iccleub ( ( ( 𝐴𝑗 ) ∈ ℝ* ∧ ( 𝐴𝑗 ) ∈ ℝ* ∧ ( 𝑓𝑗 ) ∈ ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) ) → ( 𝑓𝑗 ) ≤ ( 𝐴𝑗 ) )
26 24 24 21 25 syl3anc ( ( ( 𝜑𝑓X 𝑗𝑋 ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) ) ∧ 𝑗𝑋 ) → ( 𝑓𝑗 ) ≤ ( 𝐴𝑗 ) )
27 iccgelb ( ( ( 𝐴𝑗 ) ∈ ℝ* ∧ ( 𝐴𝑗 ) ∈ ℝ* ∧ ( 𝑓𝑗 ) ∈ ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) ) → ( 𝐴𝑗 ) ≤ ( 𝑓𝑗 ) )
28 24 24 21 27 syl3anc ( ( ( 𝜑𝑓X 𝑗𝑋 ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) ) ∧ 𝑗𝑋 ) → ( 𝐴𝑗 ) ≤ ( 𝑓𝑗 ) )
29 23 24 26 28 xrletrid ( ( ( 𝜑𝑓X 𝑗𝑋 ( ( 𝐴𝑗 ) [,] ( 𝐴𝑗 ) ) ) ∧ 𝑗𝑋 ) → ( 𝑓𝑗 ) = ( 𝐴𝑗 ) )
30 7 13 14 29 syl21anc ( ( ( 𝜑𝑓X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) ) ∧ 𝑗𝑋 ) → ( 𝑓𝑗 ) = ( 𝐴𝑗 ) )
31 3 6 30 eqfnfvd ( ( 𝜑𝑓X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) ) → 𝑓 = 𝐴 )
32 velsn ( 𝑓 ∈ { 𝐴 } ↔ 𝑓 = 𝐴 )
33 32 bicomi ( 𝑓 = 𝐴𝑓 ∈ { 𝐴 } )
34 33 biimpi ( 𝑓 = 𝐴𝑓 ∈ { 𝐴 } )
35 31 34 syl ( ( 𝜑𝑓X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) ) → 𝑓 ∈ { 𝐴 } )
36 35 ssd ( 𝜑X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) ⊆ { 𝐴 } )
37 1 elexd ( 𝜑𝐴 ∈ V )
38 16 ffvelrnda ( ( 𝜑𝑘𝑋 ) → ( 𝐴𝑘 ) ∈ ℝ )
39 38 leidd ( ( 𝜑𝑘𝑋 ) → ( 𝐴𝑘 ) ≤ ( 𝐴𝑘 ) )
40 38 38 38 39 39 eliccd ( ( 𝜑𝑘𝑋 ) → ( 𝐴𝑘 ) ∈ ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) )
41 40 ralrimiva ( 𝜑 → ∀ 𝑘𝑋 ( 𝐴𝑘 ) ∈ ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) )
42 37 5 41 3jca ( 𝜑 → ( 𝐴 ∈ V ∧ 𝐴 Fn 𝑋 ∧ ∀ 𝑘𝑋 ( 𝐴𝑘 ) ∈ ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) ) )
43 elixp2 ( 𝐴X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) ↔ ( 𝐴 ∈ V ∧ 𝐴 Fn 𝑋 ∧ ∀ 𝑘𝑋 ( 𝐴𝑘 ) ∈ ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) ) )
44 42 43 sylibr ( 𝜑𝐴X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) )
45 snssg ( 𝐴 ∈ ( ℝ ↑m 𝑋 ) → ( 𝐴X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) ↔ { 𝐴 } ⊆ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) ) )
46 1 45 syl ( 𝜑 → ( 𝐴X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) ↔ { 𝐴 } ⊆ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) ) )
47 44 46 mpbid ( 𝜑 → { 𝐴 } ⊆ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) )
48 36 47 eqssd ( 𝜑X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐴𝑘 ) ) = { 𝐴 } )