Step |
Hyp |
Ref |
Expression |
1 |
|
rrxsnicc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( ℝ ↑m 𝑋 ) ) |
2 |
|
ixpfn |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) → 𝑓 Fn 𝑋 ) |
3 |
2
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) → 𝑓 Fn 𝑋 ) |
4 |
|
elmapfn |
⊢ ( 𝐴 ∈ ( ℝ ↑m 𝑋 ) → 𝐴 Fn 𝑋 ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝐴 Fn 𝑋 ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) → 𝐴 Fn 𝑋 ) |
7 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) ∧ 𝑗 ∈ 𝑋 ) → 𝜑 ) |
8 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑗 ) ) |
9 |
8 8
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ) |
10 |
9
|
cbvixpv |
⊢ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) = X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) |
11 |
10
|
eleq2i |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ↔ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ) |
12 |
11
|
biimpi |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) → 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ) |
13 |
12
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) ∧ 𝑗 ∈ 𝑋 ) → 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ) |
14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) ∧ 𝑗 ∈ 𝑋 ) → 𝑗 ∈ 𝑋 ) |
15 |
|
elmapi |
⊢ ( 𝐴 ∈ ( ℝ ↑m 𝑋 ) → 𝐴 : 𝑋 ⟶ ℝ ) |
16 |
1 15
|
syl |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
17 |
16
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑗 ) ∈ ℝ ) |
18 |
17
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ) ∧ 𝑗 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑗 ) ∈ ℝ ) |
19 |
18 18
|
iccssred |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ) ∧ 𝑗 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ⊆ ℝ ) |
20 |
|
fvixp2 |
⊢ ( ( 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ∧ 𝑗 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑗 ) ∈ ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ) |
21 |
20
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ) ∧ 𝑗 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑗 ) ∈ ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ) |
22 |
19 21
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ) ∧ 𝑗 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑗 ) ∈ ℝ ) |
23 |
22
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ) ∧ 𝑗 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑗 ) ∈ ℝ* ) |
24 |
18
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ) ∧ 𝑗 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑗 ) ∈ ℝ* ) |
25 |
|
iccleub |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℝ* ∧ ( 𝐴 ‘ 𝑗 ) ∈ ℝ* ∧ ( 𝑓 ‘ 𝑗 ) ∈ ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ) → ( 𝑓 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) |
26 |
24 24 21 25
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ) ∧ 𝑗 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) |
27 |
|
iccgelb |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℝ* ∧ ( 𝐴 ‘ 𝑗 ) ∈ ℝ* ∧ ( 𝑓 ‘ 𝑗 ) ∈ ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ) → ( 𝐴 ‘ 𝑗 ) ≤ ( 𝑓 ‘ 𝑗 ) ) |
28 |
24 24 21 27
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ) ∧ 𝑗 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑗 ) ≤ ( 𝑓 ‘ 𝑗 ) ) |
29 |
23 24 26 28
|
xrletrid |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) [,] ( 𝐴 ‘ 𝑗 ) ) ) ∧ 𝑗 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑗 ) = ( 𝐴 ‘ 𝑗 ) ) |
30 |
7 13 14 29
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) ∧ 𝑗 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑗 ) = ( 𝐴 ‘ 𝑗 ) ) |
31 |
3 6 30
|
eqfnfvd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) → 𝑓 = 𝐴 ) |
32 |
|
velsn |
⊢ ( 𝑓 ∈ { 𝐴 } ↔ 𝑓 = 𝐴 ) |
33 |
32
|
bicomi |
⊢ ( 𝑓 = 𝐴 ↔ 𝑓 ∈ { 𝐴 } ) |
34 |
33
|
biimpi |
⊢ ( 𝑓 = 𝐴 → 𝑓 ∈ { 𝐴 } ) |
35 |
31 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) → 𝑓 ∈ { 𝐴 } ) |
36 |
35
|
ssd |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ⊆ { 𝐴 } ) |
37 |
1
|
elexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
38 |
16
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
39 |
38
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) |
40 |
38 38 38 39 39
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) |
41 |
40
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ∈ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) |
42 |
37 5 41
|
3jca |
⊢ ( 𝜑 → ( 𝐴 ∈ V ∧ 𝐴 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ∈ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) ) |
43 |
|
elixp2 |
⊢ ( 𝐴 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ↔ ( 𝐴 ∈ V ∧ 𝐴 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) ∈ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) ) |
44 |
42 43
|
sylibr |
⊢ ( 𝜑 → 𝐴 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) |
45 |
|
snssg |
⊢ ( 𝐴 ∈ ( ℝ ↑m 𝑋 ) → ( 𝐴 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ↔ { 𝐴 } ⊆ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) ) |
46 |
1 45
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ↔ { 𝐴 } ⊆ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) ) |
47 |
44 46
|
mpbid |
⊢ ( 𝜑 → { 𝐴 } ⊆ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) |
48 |
36 47
|
eqssd |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) = { 𝐴 } ) |