Step |
Hyp |
Ref |
Expression |
1 |
|
rrxsnicc.1 |
|
2 |
|
ixpfn |
|
3 |
2
|
adantl |
|
4 |
|
elmapfn |
|
5 |
1 4
|
syl |
|
6 |
5
|
adantr |
|
7 |
|
simpll |
|
8 |
|
fveq2 |
|
9 |
8 8
|
oveq12d |
|
10 |
9
|
cbvixpv |
|
11 |
10
|
eleq2i |
|
12 |
11
|
biimpi |
|
13 |
12
|
ad2antlr |
|
14 |
|
simpr |
|
15 |
|
elmapi |
|
16 |
1 15
|
syl |
|
17 |
16
|
ffvelrnda |
|
18 |
17
|
adantlr |
|
19 |
18 18
|
iccssred |
|
20 |
|
fvixp2 |
|
21 |
20
|
adantll |
|
22 |
19 21
|
sseldd |
|
23 |
22
|
rexrd |
|
24 |
18
|
rexrd |
|
25 |
|
iccleub |
|
26 |
24 24 21 25
|
syl3anc |
|
27 |
|
iccgelb |
|
28 |
24 24 21 27
|
syl3anc |
|
29 |
23 24 26 28
|
xrletrid |
|
30 |
7 13 14 29
|
syl21anc |
|
31 |
3 6 30
|
eqfnfvd |
|
32 |
|
velsn |
|
33 |
32
|
bicomi |
|
34 |
33
|
biimpi |
|
35 |
31 34
|
syl |
|
36 |
35
|
ssd |
|
37 |
1
|
elexd |
|
38 |
16
|
ffvelrnda |
|
39 |
38
|
leidd |
|
40 |
38 38 38 39 39
|
eliccd |
|
41 |
40
|
ralrimiva |
|
42 |
37 5 41
|
3jca |
|
43 |
|
elixp2 |
|
44 |
42 43
|
sylibr |
|
45 |
|
snssg |
|
46 |
1 45
|
syl |
|
47 |
44 46
|
mpbid |
|
48 |
36 47
|
eqssd |
|