Metamath Proof Explorer


Theorem rrnprjdstle

Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses rrnprjdstle.x φ X Fin
rrnprjdstle.f φ F : X
rrnprjdstle.g φ G : X
rrnprjdstle.i φ I X
rrnprjdstle.d D = dist X
Assertion rrnprjdstle φ F I G I F D G

Proof

Step Hyp Ref Expression
1 rrnprjdstle.x φ X Fin
2 rrnprjdstle.f φ F : X
3 rrnprjdstle.g φ G : X
4 rrnprjdstle.i φ I X
5 rrnprjdstle.d D = dist X
6 2 4 ffvelrnd φ F I
7 3 4 ffvelrnd φ G I
8 eqid abs 2 = abs 2
9 8 remetdval F I G I F I abs 2 G I = F I G I
10 6 7 9 syl2anc φ F I abs 2 G I = F I G I
11 10 eqcomd φ F I G I = F I abs 2 G I
12 reex V
13 12 a1i φ V
14 13 1 elmapd φ F X F : X
15 2 14 mpbird φ F X
16 eqid X = X
17 eqid Base X = Base X
18 1 16 17 rrxbasefi φ Base X = X
19 16 17 rrxbase X Fin Base X = h X | finSupp 0 h
20 1 19 syl φ Base X = h X | finSupp 0 h
21 18 20 eqtr3d φ X = h X | finSupp 0 h
22 15 21 eleqtrd φ F h X | finSupp 0 h
23 13 1 elmapd φ G X G : X
24 3 23 mpbird φ G X
25 24 21 eleqtrd φ G h X | finSupp 0 h
26 eqid h X | finSupp 0 h = h X | finSupp 0 h
27 26 5 8 rrxdstprj1 X Fin I X F h X | finSupp 0 h G h X | finSupp 0 h F I abs 2 G I F D G
28 1 4 22 25 27 syl22anc φ F I abs 2 G I F D G
29 11 28 eqbrtrd φ F I G I F D G