Step |
Hyp |
Ref |
Expression |
1 |
|
rrnprjdstle.x |
|- ( ph -> X e. Fin ) |
2 |
|
rrnprjdstle.f |
|- ( ph -> F : X --> RR ) |
3 |
|
rrnprjdstle.g |
|- ( ph -> G : X --> RR ) |
4 |
|
rrnprjdstle.i |
|- ( ph -> I e. X ) |
5 |
|
rrnprjdstle.d |
|- D = ( dist ` ( RR^ ` X ) ) |
6 |
2 4
|
ffvelrnd |
|- ( ph -> ( F ` I ) e. RR ) |
7 |
3 4
|
ffvelrnd |
|- ( ph -> ( G ` I ) e. RR ) |
8 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
9 |
8
|
remetdval |
|- ( ( ( F ` I ) e. RR /\ ( G ` I ) e. RR ) -> ( ( F ` I ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` I ) ) = ( abs ` ( ( F ` I ) - ( G ` I ) ) ) ) |
10 |
6 7 9
|
syl2anc |
|- ( ph -> ( ( F ` I ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` I ) ) = ( abs ` ( ( F ` I ) - ( G ` I ) ) ) ) |
11 |
10
|
eqcomd |
|- ( ph -> ( abs ` ( ( F ` I ) - ( G ` I ) ) ) = ( ( F ` I ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` I ) ) ) |
12 |
|
reex |
|- RR e. _V |
13 |
12
|
a1i |
|- ( ph -> RR e. _V ) |
14 |
13 1
|
elmapd |
|- ( ph -> ( F e. ( RR ^m X ) <-> F : X --> RR ) ) |
15 |
2 14
|
mpbird |
|- ( ph -> F e. ( RR ^m X ) ) |
16 |
|
eqid |
|- ( RR^ ` X ) = ( RR^ ` X ) |
17 |
|
eqid |
|- ( Base ` ( RR^ ` X ) ) = ( Base ` ( RR^ ` X ) ) |
18 |
1 16 17
|
rrxbasefi |
|- ( ph -> ( Base ` ( RR^ ` X ) ) = ( RR ^m X ) ) |
19 |
16 17
|
rrxbase |
|- ( X e. Fin -> ( Base ` ( RR^ ` X ) ) = { h e. ( RR ^m X ) | h finSupp 0 } ) |
20 |
1 19
|
syl |
|- ( ph -> ( Base ` ( RR^ ` X ) ) = { h e. ( RR ^m X ) | h finSupp 0 } ) |
21 |
18 20
|
eqtr3d |
|- ( ph -> ( RR ^m X ) = { h e. ( RR ^m X ) | h finSupp 0 } ) |
22 |
15 21
|
eleqtrd |
|- ( ph -> F e. { h e. ( RR ^m X ) | h finSupp 0 } ) |
23 |
13 1
|
elmapd |
|- ( ph -> ( G e. ( RR ^m X ) <-> G : X --> RR ) ) |
24 |
3 23
|
mpbird |
|- ( ph -> G e. ( RR ^m X ) ) |
25 |
24 21
|
eleqtrd |
|- ( ph -> G e. { h e. ( RR ^m X ) | h finSupp 0 } ) |
26 |
|
eqid |
|- { h e. ( RR ^m X ) | h finSupp 0 } = { h e. ( RR ^m X ) | h finSupp 0 } |
27 |
26 5 8
|
rrxdstprj1 |
|- ( ( ( X e. Fin /\ I e. X ) /\ ( F e. { h e. ( RR ^m X ) | h finSupp 0 } /\ G e. { h e. ( RR ^m X ) | h finSupp 0 } ) ) -> ( ( F ` I ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` I ) ) <_ ( F D G ) ) |
28 |
1 4 22 25 27
|
syl22anc |
|- ( ph -> ( ( F ` I ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` I ) ) <_ ( F D G ) ) |
29 |
11 28
|
eqbrtrd |
|- ( ph -> ( abs ` ( ( F ` I ) - ( G ` I ) ) ) <_ ( F D G ) ) |