| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrndsmet.1 |  |-  ( ph -> X e. Fin ) | 
						
							| 2 |  | rrndsmet.2 |  |-  D = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) | 
						
							| 3 | 2 | a1i |  |-  ( ph -> D = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) | 
						
							| 4 |  | eqid |  |-  ( RR^ ` X ) = ( RR^ ` X ) | 
						
							| 5 |  | eqid |  |-  ( RR ^m X ) = ( RR ^m X ) | 
						
							| 6 | 4 5 | rrxdsfi |  |-  ( X e. Fin -> ( dist ` ( RR^ ` X ) ) = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) | 
						
							| 7 | 1 6 | syl |  |-  ( ph -> ( dist ` ( RR^ ` X ) ) = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) | 
						
							| 8 | 3 7 | eqtr4d |  |-  ( ph -> D = ( dist ` ( RR^ ` X ) ) ) | 
						
							| 9 |  | eqid |  |-  ( dist ` ( RR^ ` X ) ) = ( dist ` ( RR^ ` X ) ) | 
						
							| 10 | 9 | rrxmetfi |  |-  ( X e. Fin -> ( dist ` ( RR^ ` X ) ) e. ( Met ` ( RR ^m X ) ) ) | 
						
							| 11 | 1 10 | syl |  |-  ( ph -> ( dist ` ( RR^ ` X ) ) e. ( Met ` ( RR ^m X ) ) ) | 
						
							| 12 | 8 11 | eqeltrd |  |-  ( ph -> D e. ( Met ` ( RR ^m X ) ) ) |