Step |
Hyp |
Ref |
Expression |
1 |
|
rrndsmet.1 |
|- ( ph -> X e. Fin ) |
2 |
|
rrndsmet.2 |
|- D = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) |
3 |
2
|
a1i |
|- ( ph -> D = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
4 |
|
eqid |
|- ( RR^ ` X ) = ( RR^ ` X ) |
5 |
|
eqid |
|- ( RR ^m X ) = ( RR ^m X ) |
6 |
4 5
|
rrxdsfi |
|- ( X e. Fin -> ( dist ` ( RR^ ` X ) ) = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
7 |
1 6
|
syl |
|- ( ph -> ( dist ` ( RR^ ` X ) ) = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
8 |
3 7
|
eqtr4d |
|- ( ph -> D = ( dist ` ( RR^ ` X ) ) ) |
9 |
|
eqid |
|- ( dist ` ( RR^ ` X ) ) = ( dist ` ( RR^ ` X ) ) |
10 |
9
|
rrxmetfi |
|- ( X e. Fin -> ( dist ` ( RR^ ` X ) ) e. ( Met ` ( RR ^m X ) ) ) |
11 |
1 10
|
syl |
|- ( ph -> ( dist ` ( RR^ ` X ) ) e. ( Met ` ( RR ^m X ) ) ) |
12 |
8 11
|
eqeltrd |
|- ( ph -> D e. ( Met ` ( RR ^m X ) ) ) |