Metamath Proof Explorer


Theorem rrndsxmet

Description: D is an extended metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses rrndsxmet.1
|- ( ph -> X e. Fin )
rrndsxmet.2
|- D = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) )
Assertion rrndsxmet
|- ( ph -> D e. ( *Met ` ( RR ^m X ) ) )

Proof

Step Hyp Ref Expression
1 rrndsxmet.1
 |-  ( ph -> X e. Fin )
2 rrndsxmet.2
 |-  D = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) )
3 1 2 rrndsmet
 |-  ( ph -> D e. ( Met ` ( RR ^m X ) ) )
4 metxmet
 |-  ( D e. ( Met ` ( RR ^m X ) ) -> D e. ( *Met ` ( RR ^m X ) ) )
5 3 4 syl
 |-  ( ph -> D e. ( *Met ` ( RR ^m X ) ) )