Description: D is an extended metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rrndsxmet.1 | |- ( ph -> X e. Fin ) |
|
rrndsxmet.2 | |- D = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) |
||
Assertion | rrndsxmet | |- ( ph -> D e. ( *Met ` ( RR ^m X ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrndsxmet.1 | |- ( ph -> X e. Fin ) |
|
2 | rrndsxmet.2 | |- D = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) |
|
3 | 1 2 | rrndsmet | |- ( ph -> D e. ( Met ` ( RR ^m X ) ) ) |
4 | metxmet | |- ( D e. ( Met ` ( RR ^m X ) ) -> D e. ( *Met ` ( RR ^m X ) ) ) |
|
5 | 3 4 | syl | |- ( ph -> D e. ( *Met ` ( RR ^m X ) ) ) |