Description: D is an extended metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrndsxmet.1 | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| rrndsxmet.2 | ⊢ 𝐷 = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) | ||
| Assertion | rrndsxmet | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rrndsxmet.1 | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| 2 | rrndsxmet.2 | ⊢ 𝐷 = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) | |
| 3 | 1 2 | rrndsmet | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) ) | 
| 4 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ) |