Description: D is an extended metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rrndsxmet.1 | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
rrndsxmet.2 | ⊢ 𝐷 = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) | ||
Assertion | rrndsxmet | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrndsxmet.1 | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
2 | rrndsxmet.2 | ⊢ 𝐷 = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) | |
3 | 1 2 | rrndsmet | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
4 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ) | |
5 | 3 4 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ) |