Metamath Proof Explorer


Theorem rrndsxmet

Description: D is an extended metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses rrndsxmet.1 ( 𝜑𝑋 ∈ Fin )
rrndsxmet.2 𝐷 = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘𝑋 ( ( ( 𝑓𝑘 ) − ( 𝑔𝑘 ) ) ↑ 2 ) ) )
Assertion rrndsxmet ( 𝜑𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 rrndsxmet.1 ( 𝜑𝑋 ∈ Fin )
2 rrndsxmet.2 𝐷 = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘𝑋 ( ( ( 𝑓𝑘 ) − ( 𝑔𝑘 ) ) ↑ 2 ) ) )
3 1 2 rrndsmet ( 𝜑𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) )
4 metxmet ( 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) )
5 3 4 syl ( 𝜑𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) )