| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrndsmet.1 |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
|
rrndsmet.2 |
⊢ 𝐷 = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 3 |
2
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| 4 |
|
eqid |
⊢ ( ℝ^ ‘ 𝑋 ) = ( ℝ^ ‘ 𝑋 ) |
| 5 |
|
eqid |
⊢ ( ℝ ↑m 𝑋 ) = ( ℝ ↑m 𝑋 ) |
| 6 |
4 5
|
rrxdsfi |
⊢ ( 𝑋 ∈ Fin → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| 7 |
1 6
|
syl |
⊢ ( 𝜑 → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| 8 |
3 7
|
eqtr4d |
⊢ ( 𝜑 → 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
| 9 |
|
eqid |
⊢ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) |
| 10 |
9
|
rrxmetfi |
⊢ ( 𝑋 ∈ Fin → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
| 11 |
1 10
|
syl |
⊢ ( 𝜑 → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
| 12 |
8 11
|
eqeltrd |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) ) |