| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrndsmet.1 | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 2 |  | rrndsmet.2 | ⊢ 𝐷  =  ( 𝑓  ∈  ( ℝ  ↑m  𝑋 ) ,  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) | 
						
							| 3 | 2 | a1i | ⊢ ( 𝜑  →  𝐷  =  ( 𝑓  ∈  ( ℝ  ↑m  𝑋 ) ,  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) | 
						
							| 4 |  | eqid | ⊢ ( ℝ^ ‘ 𝑋 )  =  ( ℝ^ ‘ 𝑋 ) | 
						
							| 5 |  | eqid | ⊢ ( ℝ  ↑m  𝑋 )  =  ( ℝ  ↑m  𝑋 ) | 
						
							| 6 | 4 5 | rrxdsfi | ⊢ ( 𝑋  ∈  Fin  →  ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  =  ( 𝑓  ∈  ( ℝ  ↑m  𝑋 ) ,  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝜑  →  ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  =  ( 𝑓  ∈  ( ℝ  ↑m  𝑋 ) ,  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) | 
						
							| 8 | 3 7 | eqtr4d | ⊢ ( 𝜑  →  𝐷  =  ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  =  ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) | 
						
							| 10 | 9 | rrxmetfi | ⊢ ( 𝑋  ∈  Fin  →  ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  ∈  ( Met ‘ ( ℝ  ↑m  𝑋 ) ) ) | 
						
							| 11 | 1 10 | syl | ⊢ ( 𝜑  →  ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  ∈  ( Met ‘ ( ℝ  ↑m  𝑋 ) ) ) | 
						
							| 12 | 8 11 | eqeltrd | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ ( ℝ  ↑m  𝑋 ) ) ) |