Metamath Proof Explorer


Theorem rrndsmet

Description: D is a metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses rrndsmet.1 ( 𝜑𝑋 ∈ Fin )
rrndsmet.2 𝐷 = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘𝑋 ( ( ( 𝑓𝑘 ) − ( 𝑔𝑘 ) ) ↑ 2 ) ) )
Assertion rrndsmet ( 𝜑𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 rrndsmet.1 ( 𝜑𝑋 ∈ Fin )
2 rrndsmet.2 𝐷 = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘𝑋 ( ( ( 𝑓𝑘 ) − ( 𝑔𝑘 ) ) ↑ 2 ) ) )
3 2 a1i ( 𝜑𝐷 = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘𝑋 ( ( ( 𝑓𝑘 ) − ( 𝑔𝑘 ) ) ↑ 2 ) ) ) )
4 eqid ( ℝ^ ‘ 𝑋 ) = ( ℝ^ ‘ 𝑋 )
5 eqid ( ℝ ↑m 𝑋 ) = ( ℝ ↑m 𝑋 )
6 4 5 rrxdsfi ( 𝑋 ∈ Fin → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘𝑋 ( ( ( 𝑓𝑘 ) − ( 𝑔𝑘 ) ) ↑ 2 ) ) ) )
7 1 6 syl ( 𝜑 → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘𝑋 ( ( ( 𝑓𝑘 ) − ( 𝑔𝑘 ) ) ↑ 2 ) ) ) )
8 3 7 eqtr4d ( 𝜑𝐷 = ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) )
9 eqid ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( dist ‘ ( ℝ^ ‘ 𝑋 ) )
10 9 rrxmetfi ( 𝑋 ∈ Fin → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) )
11 1 10 syl ( 𝜑 → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) )
12 8 11 eqeltrd ( 𝜑𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) )