Metamath Proof Explorer


Theorem rrndsmet

Description: D is a metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses rrndsmet.1 φXFin
rrndsmet.2 D=fX,gXkXfkgk2
Assertion rrndsmet φDMetX

Proof

Step Hyp Ref Expression
1 rrndsmet.1 φXFin
2 rrndsmet.2 D=fX,gXkXfkgk2
3 2 a1i φD=fX,gXkXfkgk2
4 eqid msup=msup
5 eqid X=X
6 4 5 rrxdsfi XFindistmsup=fX,gXkXfkgk2
7 1 6 syl φdistmsup=fX,gXkXfkgk2
8 3 7 eqtr4d φD=distmsup
9 eqid distmsup=distmsup
10 9 rrxmetfi XFindistmsupMetX
11 1 10 syl φdistmsupMetX
12 8 11 eqeltrd φDMetX