Metamath Proof Explorer


Theorem rrndsmet

Description: D is a metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses rrndsmet.1 φ X Fin
rrndsmet.2 D = f X , g X k X f k g k 2
Assertion rrndsmet φ D Met X

Proof

Step Hyp Ref Expression
1 rrndsmet.1 φ X Fin
2 rrndsmet.2 D = f X , g X k X f k g k 2
3 2 a1i φ D = f X , g X k X f k g k 2
4 eqid X = X
5 eqid X = X
6 4 5 rrxdsfi X Fin dist X = f X , g X k X f k g k 2
7 1 6 syl φ dist X = f X , g X k X f k g k 2
8 3 7 eqtr4d φ D = dist X
9 eqid dist X = dist X
10 9 rrxmetfi X Fin dist X Met X
11 1 10 syl φ dist X Met X
12 8 11 eqeltrd φ D Met X