| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioorrnopnlem.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 2 |  | ioorrnopnlem.n | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 3 |  | ioorrnopnlem.a | ⊢ ( 𝜑  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 4 |  | ioorrnopnlem.b | ⊢ ( 𝜑  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 5 |  | ioorrnopnlem.f | ⊢ ( 𝜑  →  𝐹  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 6 |  | ioorrnopnlem.h | ⊢ 𝐻  =  ran  ( 𝑖  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) ) | 
						
							| 7 |  | ioorrnopnlem.e | ⊢ 𝐸  =  inf ( 𝐻 ,  ℝ ,   <  ) | 
						
							| 8 |  | ioorrnopnlem.v | ⊢ 𝑉  =  ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 ) | 
						
							| 9 |  | ioorrnopnlem.d | ⊢ 𝐷  =  ( 𝑓  ∈  ( ℝ  ↑m  𝑋 ) ,  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) | 
						
							| 10 | 1 9 | rrndsxmet | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ ( ℝ  ↑m  𝑋 ) ) ) | 
						
							| 11 |  | nfv | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 12 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 14 |  | ioossre | ⊢ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ⊆  ℝ | 
						
							| 15 | 14 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ⊆  ℝ ) | 
						
							| 16 | 11 13 15 | ixpssmapc | ⊢ ( 𝜑  →  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ⊆  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 17 | 16 5 | sseldd | ⊢ ( 𝜑  →  𝐹  ∈  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 18 | 6 | a1i | ⊢ ( 𝜑  →  𝐻  =  ran  ( 𝑖  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) ) ) | 
						
							| 19 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 20 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  𝐹  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  𝑖  ∈  𝑋 ) | 
						
							| 22 |  | fvixp2 | ⊢ ( ( 𝐹  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑖 )  ∈  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 23 | 20 21 22 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑖 )  ∈  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 24 | 14 23 | sselid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 25 | 19 24 | resubcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 26 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 27 | 26 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 28 | 19 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 29 |  | iooltub | ⊢ ( ( ( 𝐴 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝐵 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝑖 )  ∈  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) )  →  ( 𝐹 ‘ 𝑖 )  <  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 30 | 27 28 23 29 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑖 )  <  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 31 | 24 19 | posdifd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  <  ( 𝐵 ‘ 𝑖 )  ↔  0  <  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ) ) | 
						
							| 32 | 30 31 | mpbid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  0  <  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 33 | 25 32 | elrpd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ∈  ℝ+ ) | 
						
							| 34 | 24 26 | resubcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 35 |  | ioogtlb | ⊢ ( ( ( 𝐴 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝐵 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝑖 )  ∈  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) )  →  ( 𝐴 ‘ 𝑖 )  <  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 36 | 27 28 23 35 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑖 )  <  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 37 | 26 24 | posdifd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐴 ‘ 𝑖 )  <  ( 𝐹 ‘ 𝑖 )  ↔  0  <  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) ) | 
						
							| 38 | 36 37 | mpbid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  0  <  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) | 
						
							| 39 | 34 38 | elrpd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) )  ∈  ℝ+ ) | 
						
							| 40 | 33 39 | ifcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) )  ∈  ℝ+ ) | 
						
							| 41 | 40 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  𝑋 if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) )  ∈  ℝ+ ) | 
						
							| 42 |  | eqid | ⊢ ( 𝑖  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) )  =  ( 𝑖  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) ) | 
						
							| 43 | 42 | rnmptss | ⊢ ( ∀ 𝑖  ∈  𝑋 if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) )  ∈  ℝ+  →  ran  ( 𝑖  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) )  ⊆  ℝ+ ) | 
						
							| 44 | 41 43 | syl | ⊢ ( 𝜑  →  ran  ( 𝑖  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) )  ⊆  ℝ+ ) | 
						
							| 45 | 18 44 | eqsstrd | ⊢ ( 𝜑  →  𝐻  ⊆  ℝ+ ) | 
						
							| 46 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 47 | 46 | a1i | ⊢ ( 𝜑  →   <   Or  ℝ ) | 
						
							| 48 | 42 | rnmptfi | ⊢ ( 𝑋  ∈  Fin  →  ran  ( 𝑖  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) )  ∈  Fin ) | 
						
							| 49 | 1 48 | syl | ⊢ ( 𝜑  →  ran  ( 𝑖  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) )  ∈  Fin ) | 
						
							| 50 | 6 49 | eqeltrid | ⊢ ( 𝜑  →  𝐻  ∈  Fin ) | 
						
							| 51 | 11 40 42 2 | rnmptn0 | ⊢ ( 𝜑  →  ran  ( 𝑖  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) )  ≠  ∅ ) | 
						
							| 52 | 18 51 | eqnetrd | ⊢ ( 𝜑  →  𝐻  ≠  ∅ ) | 
						
							| 53 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 54 | 53 | a1i | ⊢ ( 𝜑  →  ℝ+  ⊆  ℝ ) | 
						
							| 55 | 45 54 | sstrd | ⊢ ( 𝜑  →  𝐻  ⊆  ℝ ) | 
						
							| 56 |  | fiinfcl | ⊢ ( (  <   Or  ℝ  ∧  ( 𝐻  ∈  Fin  ∧  𝐻  ≠  ∅  ∧  𝐻  ⊆  ℝ ) )  →  inf ( 𝐻 ,  ℝ ,   <  )  ∈  𝐻 ) | 
						
							| 57 | 47 50 52 55 56 | syl13anc | ⊢ ( 𝜑  →  inf ( 𝐻 ,  ℝ ,   <  )  ∈  𝐻 ) | 
						
							| 58 | 45 57 | sseldd | ⊢ ( 𝜑  →  inf ( 𝐻 ,  ℝ ,   <  )  ∈  ℝ+ ) | 
						
							| 59 | 7 58 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 60 |  | rpxr | ⊢ ( 𝐸  ∈  ℝ+  →  𝐸  ∈  ℝ* ) | 
						
							| 61 | 59 60 | syl | ⊢ ( 𝜑  →  𝐸  ∈  ℝ* ) | 
						
							| 62 |  | eqid | ⊢ ( MetOpen ‘ 𝐷 )  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 63 | 62 | blopn | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ ( ℝ  ↑m  𝑋 ) )  ∧  𝐹  ∈  ( ℝ  ↑m  𝑋 )  ∧  𝐸  ∈  ℝ* )  →  ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 )  ∈  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 64 | 10 17 61 63 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 )  ∈  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 65 | 8 | a1i | ⊢ ( 𝜑  →  𝑉  =  ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 ) ) | 
						
							| 66 | 1 | rrxtopnfi | ⊢ ( 𝜑  →  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  =  ( MetOpen ‘ ( 𝑓  ∈  ( ℝ  ↑m  𝑋 ) ,  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) ) | 
						
							| 67 | 9 | eqcomi | ⊢ ( 𝑓  ∈  ( ℝ  ↑m  𝑋 ) ,  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) )  =  𝐷 | 
						
							| 68 | 67 | a1i | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( ℝ  ↑m  𝑋 ) ,  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) )  =  𝐷 ) | 
						
							| 69 | 68 | fveq2d | ⊢ ( 𝜑  →  ( MetOpen ‘ ( 𝑓  ∈  ( ℝ  ↑m  𝑋 ) ,  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) )  =  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 70 | 66 69 | eqtrd | ⊢ ( 𝜑  →  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  =  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 71 | 65 70 | eleq12d | ⊢ ( 𝜑  →  ( 𝑉  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  ↔  ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 )  ∈  ( MetOpen ‘ 𝐷 ) ) ) | 
						
							| 72 | 64 71 | mpbird | ⊢ ( 𝜑  →  𝑉  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) | 
						
							| 73 |  | xmetpsmet | ⊢ ( 𝐷  ∈  ( ∞Met ‘ ( ℝ  ↑m  𝑋 ) )  →  𝐷  ∈  ( PsMet ‘ ( ℝ  ↑m  𝑋 ) ) ) | 
						
							| 74 | 10 73 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( PsMet ‘ ( ℝ  ↑m  𝑋 ) ) ) | 
						
							| 75 |  | blcntrps | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ ( ℝ  ↑m  𝑋 ) )  ∧  𝐹  ∈  ( ℝ  ↑m  𝑋 )  ∧  𝐸  ∈  ℝ+ )  →  𝐹  ∈  ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 ) ) | 
						
							| 76 | 74 17 59 75 | syl3anc | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 ) ) | 
						
							| 77 | 65 | eqcomd | ⊢ ( 𝜑  →  ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 )  =  𝑉 ) | 
						
							| 78 | 76 77 | eleqtrd | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
						
							| 79 |  | nfv | ⊢ Ⅎ 𝑔 𝜑 | 
						
							| 80 |  | elmapfn | ⊢ ( 𝑔  ∈  ( ℝ  ↑m  𝑋 )  →  𝑔  Fn  𝑋 ) | 
						
							| 81 | 80 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  →  𝑔  Fn  𝑋 ) | 
						
							| 82 | 27 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 83 | 28 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 84 |  | simpl2 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  𝑔  ∈  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 85 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  𝑖  ∈  𝑋 ) | 
						
							| 86 |  | elmapi | ⊢ ( 𝑔  ∈  ( ℝ  ↑m  𝑋 )  →  𝑔 : 𝑋 ⟶ ℝ ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  𝑖  ∈  𝑋 )  →  𝑔 : 𝑋 ⟶ ℝ ) | 
						
							| 88 |  | simpr | ⊢ ( ( 𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  𝑖  ∈  𝑋 )  →  𝑖  ∈  𝑋 ) | 
						
							| 89 | 87 88 | ffvelcdmd | ⊢ ( ( 𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  𝑖  ∈  𝑋 )  →  ( 𝑔 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 90 | 84 85 89 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( 𝑔 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 91 | 26 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 92 | 53 59 | sselid | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  𝐸  ∈  ℝ ) | 
						
							| 94 | 24 93 | resubcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  −  𝐸 )  ∈  ℝ ) | 
						
							| 95 | 94 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  −  𝐸 )  ∈  ℝ ) | 
						
							| 96 | 53 40 | sselid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) )  ∈  ℝ ) | 
						
							| 97 | 7 | a1i | ⊢ ( 𝜑  →  𝐸  =  inf ( 𝐻 ,  ℝ ,   <  ) ) | 
						
							| 98 |  | infxrrefi | ⊢ ( ( 𝐻  ⊆  ℝ  ∧  𝐻  ∈  Fin  ∧  𝐻  ≠  ∅ )  →  inf ( 𝐻 ,  ℝ* ,   <  )  =  inf ( 𝐻 ,  ℝ ,   <  ) ) | 
						
							| 99 | 55 50 52 98 | syl3anc | ⊢ ( 𝜑  →  inf ( 𝐻 ,  ℝ* ,   <  )  =  inf ( 𝐻 ,  ℝ ,   <  ) ) | 
						
							| 100 | 99 | eqcomd | ⊢ ( 𝜑  →  inf ( 𝐻 ,  ℝ ,   <  )  =  inf ( 𝐻 ,  ℝ* ,   <  ) ) | 
						
							| 101 | 97 100 | eqtrd | ⊢ ( 𝜑  →  𝐸  =  inf ( 𝐻 ,  ℝ* ,   <  ) ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  𝐸  =  inf ( 𝐻 ,  ℝ* ,   <  ) ) | 
						
							| 103 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 104 | 103 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℝ* ) | 
						
							| 105 | 55 104 | sstrd | ⊢ ( 𝜑  →  𝐻  ⊆  ℝ* ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  𝐻  ⊆  ℝ* ) | 
						
							| 107 | 40 | elexd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) )  ∈  V ) | 
						
							| 108 | 42 | elrnmpt1 | ⊢ ( ( 𝑖  ∈  𝑋  ∧  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) )  ∈  V )  →  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) )  ∈  ran  ( 𝑖  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) ) ) | 
						
							| 109 | 21 107 108 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) )  ∈  ran  ( 𝑖  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) ) ) | 
						
							| 110 | 109 6 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) )  ∈  𝐻 ) | 
						
							| 111 |  | infxrlb | ⊢ ( ( 𝐻  ⊆  ℝ*  ∧  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) )  ∈  𝐻 )  →  inf ( 𝐻 ,  ℝ* ,   <  )  ≤  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) ) | 
						
							| 112 | 106 110 111 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  inf ( 𝐻 ,  ℝ* ,   <  )  ≤  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) ) | 
						
							| 113 | 102 112 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  𝐸  ≤  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) ) | 
						
							| 114 |  | min2 | ⊢ ( ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ∈  ℝ  ∧  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) )  ∈  ℝ )  →  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) | 
						
							| 115 | 25 34 114 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) | 
						
							| 116 | 93 96 34 113 115 | letrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  𝐸  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) | 
						
							| 117 | 93 24 26 116 | lesubd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑖 )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  𝐸 ) ) | 
						
							| 118 | 117 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑖 )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  𝐸 ) ) | 
						
							| 119 | 24 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 120 | 89 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( 𝑔 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 121 | 119 120 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 122 | 121 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 123 | 1 9 | rrndsmet | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ ( ℝ  ↑m  𝑋 ) ) ) | 
						
							| 124 | 123 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  𝐷  ∈  ( Met ‘ ( ℝ  ↑m  𝑋 ) ) ) | 
						
							| 125 | 17 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  𝐹  ∈  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 126 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  𝑔  ∈  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 127 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ ( ℝ  ↑m  𝑋 ) )  ∧  𝐹  ∈  ( ℝ  ↑m  𝑋 )  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  →  ( 𝐹 𝐷 𝑔 )  ∈  ℝ ) | 
						
							| 128 | 124 125 126 127 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 𝐷 𝑔 )  ∈  ℝ ) | 
						
							| 129 | 128 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 𝐷 𝑔 )  ∈  ℝ ) | 
						
							| 130 | 93 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  𝐸  ∈  ℝ ) | 
						
							| 131 | 130 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  𝐸  ∈  ℝ ) | 
						
							| 132 | 121 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 133 | 132 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) ) )  ∈  ℝ ) | 
						
							| 134 | 121 | leabsd | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) )  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) ) ) ) | 
						
							| 135 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  𝑋  ∈  Fin ) | 
						
							| 136 |  | ixpf | ⊢ ( 𝐹  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  →  𝐹 : 𝑋 ⟶ ∪  𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 137 | 5 136 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ∪  𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 138 | 15 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ⊆  ℝ ) | 
						
							| 139 |  | iunss | ⊢ ( ∪  𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ⊆  ℝ  ↔  ∀ 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ⊆  ℝ ) | 
						
							| 140 | 138 139 | sylibr | ⊢ ( 𝜑  →  ∪  𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ⊆  ℝ ) | 
						
							| 141 | 137 140 | fssd | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ℝ ) | 
						
							| 142 | 141 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  𝐹 : 𝑋 ⟶ ℝ ) | 
						
							| 143 | 126 86 | syl | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  𝑔 : 𝑋 ⟶ ℝ ) | 
						
							| 144 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  𝑖  ∈  𝑋 ) | 
						
							| 145 |  | eqid | ⊢ ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  =  ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) | 
						
							| 146 | 135 142 143 144 145 | rrnprjdstle | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) ) )  ≤  ( 𝐹 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑔 ) ) | 
						
							| 147 |  | eqid | ⊢ ( ℝ^ ‘ 𝑋 )  =  ( ℝ^ ‘ 𝑋 ) | 
						
							| 148 |  | eqid | ⊢ ( ℝ  ↑m  𝑋 )  =  ( ℝ  ↑m  𝑋 ) | 
						
							| 149 | 147 148 | rrxdsfi | ⊢ ( 𝑋  ∈  Fin  →  ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  =  ( 𝑓  ∈  ( ℝ  ↑m  𝑋 ) ,  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) | 
						
							| 150 | 1 149 | syl | ⊢ ( 𝜑  →  ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  =  ( 𝑓  ∈  ( ℝ  ↑m  𝑋 ) ,  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) | 
						
							| 151 | 150 68 | eqtrd | ⊢ ( 𝜑  →  ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  =  𝐷 ) | 
						
							| 152 | 151 | oveqd | ⊢ ( 𝜑  →  ( 𝐹 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑔 )  =  ( 𝐹 𝐷 𝑔 ) ) | 
						
							| 153 | 152 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑔 )  =  ( 𝐹 𝐷 𝑔 ) ) | 
						
							| 154 | 146 153 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) ) )  ≤  ( 𝐹 𝐷 𝑔 ) ) | 
						
							| 155 | 121 133 128 134 154 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) )  ≤  ( 𝐹 𝐷 𝑔 ) ) | 
						
							| 156 | 155 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) )  ≤  ( 𝐹 𝐷 𝑔 ) ) | 
						
							| 157 |  | simpl3 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 𝐷 𝑔 )  <  𝐸 ) | 
						
							| 158 | 122 129 131 156 157 | lelttrd | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) )  <  𝐸 ) | 
						
							| 159 |  | ltsub23 | ⊢ ( ( ( 𝐹 ‘ 𝑖 )  ∈  ℝ  ∧  ( 𝑔 ‘ 𝑖 )  ∈  ℝ  ∧  𝐸  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) )  <  𝐸  ↔  ( ( 𝐹 ‘ 𝑖 )  −  𝐸 )  <  ( 𝑔 ‘ 𝑖 ) ) ) | 
						
							| 160 | 119 120 130 159 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( ( ( 𝐹 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) )  <  𝐸  ↔  ( ( 𝐹 ‘ 𝑖 )  −  𝐸 )  <  ( 𝑔 ‘ 𝑖 ) ) ) | 
						
							| 161 | 160 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( ( ( 𝐹 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) )  <  𝐸  ↔  ( ( 𝐹 ‘ 𝑖 )  −  𝐸 )  <  ( 𝑔 ‘ 𝑖 ) ) ) | 
						
							| 162 | 158 161 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  −  𝐸 )  <  ( 𝑔 ‘ 𝑖 ) ) | 
						
							| 163 | 91 95 90 118 162 | lelttrd | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑖 )  <  ( 𝑔 ‘ 𝑖 ) ) | 
						
							| 164 | 24 93 | readdcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  +  𝐸 )  ∈  ℝ ) | 
						
							| 165 | 164 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  +  𝐸 )  ∈  ℝ ) | 
						
							| 166 | 19 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 167 | 120 119 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝑔 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 168 | 167 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝑔 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 169 | 167 | leabsd | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝑔 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( abs ‘ ( ( 𝑔 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ) ) | 
						
							| 170 | 120 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( 𝑔 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 171 | 119 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 172 | 170 171 | abssubd | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( abs ‘ ( ( 𝑔 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) ) ) ) | 
						
							| 173 | 169 172 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝑔 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑖 )  −  ( 𝑔 ‘ 𝑖 ) ) ) ) | 
						
							| 174 | 167 133 128 173 154 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 ) )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝑔 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( 𝐹 𝐷 𝑔 ) ) | 
						
							| 175 | 174 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝑔 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( 𝐹 𝐷 𝑔 ) ) | 
						
							| 176 | 168 129 131 175 157 | lelttrd | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝑔 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  <  𝐸 ) | 
						
							| 177 | 119 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 178 | 90 177 131 | ltsubadd2d | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( ( ( 𝑔 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  <  𝐸  ↔  ( 𝑔 ‘ 𝑖 )  <  ( ( 𝐹 ‘ 𝑖 )  +  𝐸 ) ) ) | 
						
							| 179 | 176 178 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( 𝑔 ‘ 𝑖 )  <  ( ( 𝐹 ‘ 𝑖 )  +  𝐸 ) ) | 
						
							| 180 |  | min1 | ⊢ ( ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ∈  ℝ  ∧  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) )  ∈  ℝ )  →  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) )  ≤  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 181 | 25 34 180 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) )  ≤  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ,  ( ( 𝐹 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) )  ≤  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 182 | 93 96 25 113 181 | letrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  𝐸  ≤  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 183 | 24 93 19 | leaddsub2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( ( 𝐹 ‘ 𝑖 )  +  𝐸 )  ≤  ( 𝐵 ‘ 𝑖 )  ↔  𝐸  ≤  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐹 ‘ 𝑖 ) ) ) ) | 
						
							| 184 | 182 183 | mpbird | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  +  𝐸 )  ≤  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 185 | 184 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  +  𝐸 )  ≤  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 186 | 90 165 166 179 185 | ltletrd | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( 𝑔 ‘ 𝑖 )  <  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 187 | 82 83 90 163 186 | eliood | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  ∧  𝑖  ∈  𝑋 )  →  ( 𝑔 ‘ 𝑖 )  ∈  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 188 | 187 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  →  ∀ 𝑖  ∈  𝑋 ( 𝑔 ‘ 𝑖 )  ∈  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 189 | 81 188 | jca | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  →  ( 𝑔  Fn  𝑋  ∧  ∀ 𝑖  ∈  𝑋 ( 𝑔 ‘ 𝑖 )  ∈  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) | 
						
							| 190 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 191 | 190 | elixp | ⊢ ( 𝑔  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ↔  ( 𝑔  Fn  𝑋  ∧  ∀ 𝑖  ∈  𝑋 ( 𝑔 ‘ 𝑖 )  ∈  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) | 
						
							| 192 | 189 191 | sylibr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℝ  ↑m  𝑋 )  ∧  ( 𝐹 𝐷 𝑔 )  <  𝐸 )  →  𝑔  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 193 | 79 74 17 61 192 | ballss3 | ⊢ ( 𝜑  →  ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 )  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 194 | 65 193 | eqsstrd | ⊢ ( 𝜑  →  𝑉  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 195 | 78 194 | jca | ⊢ ( 𝜑  →  ( 𝐹  ∈  𝑉  ∧  𝑉  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) | 
						
							| 196 |  | eleq2 | ⊢ ( 𝑣  =  𝑉  →  ( 𝐹  ∈  𝑣  ↔  𝐹  ∈  𝑉 ) ) | 
						
							| 197 |  | sseq1 | ⊢ ( 𝑣  =  𝑉  →  ( 𝑣  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ↔  𝑉  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) | 
						
							| 198 | 196 197 | anbi12d | ⊢ ( 𝑣  =  𝑉  →  ( ( 𝐹  ∈  𝑣  ∧  𝑣  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) )  ↔  ( 𝐹  ∈  𝑉  ∧  𝑉  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) ) | 
						
							| 199 | 198 | rspcev | ⊢ ( ( 𝑉  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  ∧  ( 𝐹  ∈  𝑉  ∧  𝑉  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) )  →  ∃ 𝑣  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝐹  ∈  𝑣  ∧  𝑣  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) | 
						
							| 200 | 72 195 199 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑣  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝐹  ∈  𝑣  ∧  𝑣  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) |