| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioorrnopnlem.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
|
ioorrnopnlem.n |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 3 |
|
ioorrnopnlem.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
| 4 |
|
ioorrnopnlem.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
| 5 |
|
ioorrnopnlem.f |
⊢ ( 𝜑 → 𝐹 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) |
| 6 |
|
ioorrnopnlem.h |
⊢ 𝐻 = ran ( 𝑖 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) |
| 7 |
|
ioorrnopnlem.e |
⊢ 𝐸 = inf ( 𝐻 , ℝ , < ) |
| 8 |
|
ioorrnopnlem.v |
⊢ 𝑉 = ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 ) |
| 9 |
|
ioorrnopnlem.d |
⊢ 𝐷 = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 10 |
1 9
|
rrndsxmet |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
| 11 |
|
nfv |
⊢ Ⅎ 𝑖 𝜑 |
| 12 |
|
reex |
⊢ ℝ ∈ V |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 14 |
|
ioossre |
⊢ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ⊆ ℝ |
| 15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ⊆ ℝ ) |
| 16 |
11 13 15
|
ixpssmapc |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ⊆ ( ℝ ↑m 𝑋 ) ) |
| 17 |
16 5
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ ( ℝ ↑m 𝑋 ) ) |
| 18 |
6
|
a1i |
⊢ ( 𝜑 → 𝐻 = ran ( 𝑖 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) ) |
| 19 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
| 20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 𝐹 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ 𝑋 ) |
| 22 |
|
fvixp2 |
⊢ ( ( 𝐹 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑖 ) ∈ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) |
| 23 |
20 21 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑖 ) ∈ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) |
| 24 |
14 23
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑖 ) ∈ ℝ ) |
| 25 |
19 24
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ∈ ℝ ) |
| 26 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑖 ) ∈ ℝ ) |
| 27 |
26
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑖 ) ∈ ℝ* ) |
| 28 |
19
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ* ) |
| 29 |
|
iooltub |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝑖 ) ∈ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) → ( 𝐹 ‘ 𝑖 ) < ( 𝐵 ‘ 𝑖 ) ) |
| 30 |
27 28 23 29
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑖 ) < ( 𝐵 ‘ 𝑖 ) ) |
| 31 |
24 19
|
posdifd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑖 ) < ( 𝐵 ‘ 𝑖 ) ↔ 0 < ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 32 |
30 31
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 0 < ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ) |
| 33 |
25 32
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ∈ ℝ+ ) |
| 34 |
24 26
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ∈ ℝ ) |
| 35 |
|
ioogtlb |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝑖 ) ∈ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) → ( 𝐴 ‘ 𝑖 ) < ( 𝐹 ‘ 𝑖 ) ) |
| 36 |
27 28 23 35
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑖 ) < ( 𝐹 ‘ 𝑖 ) ) |
| 37 |
26 24
|
posdifd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑖 ) < ( 𝐹 ‘ 𝑖 ) ↔ 0 < ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) |
| 38 |
36 37
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 0 < ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) |
| 39 |
34 38
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ∈ ℝ+ ) |
| 40 |
33 39
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ∈ ℝ+ ) |
| 41 |
40
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑋 if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ∈ ℝ+ ) |
| 42 |
|
eqid |
⊢ ( 𝑖 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) = ( 𝑖 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) |
| 43 |
42
|
rnmptss |
⊢ ( ∀ 𝑖 ∈ 𝑋 if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ∈ ℝ+ → ran ( 𝑖 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) ⊆ ℝ+ ) |
| 44 |
41 43
|
syl |
⊢ ( 𝜑 → ran ( 𝑖 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) ⊆ ℝ+ ) |
| 45 |
18 44
|
eqsstrd |
⊢ ( 𝜑 → 𝐻 ⊆ ℝ+ ) |
| 46 |
|
ltso |
⊢ < Or ℝ |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → < Or ℝ ) |
| 48 |
42
|
rnmptfi |
⊢ ( 𝑋 ∈ Fin → ran ( 𝑖 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) ∈ Fin ) |
| 49 |
1 48
|
syl |
⊢ ( 𝜑 → ran ( 𝑖 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) ∈ Fin ) |
| 50 |
6 49
|
eqeltrid |
⊢ ( 𝜑 → 𝐻 ∈ Fin ) |
| 51 |
11 40 42 2
|
rnmptn0 |
⊢ ( 𝜑 → ran ( 𝑖 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) ≠ ∅ ) |
| 52 |
18 51
|
eqnetrd |
⊢ ( 𝜑 → 𝐻 ≠ ∅ ) |
| 53 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 54 |
53
|
a1i |
⊢ ( 𝜑 → ℝ+ ⊆ ℝ ) |
| 55 |
45 54
|
sstrd |
⊢ ( 𝜑 → 𝐻 ⊆ ℝ ) |
| 56 |
|
fiinfcl |
⊢ ( ( < Or ℝ ∧ ( 𝐻 ∈ Fin ∧ 𝐻 ≠ ∅ ∧ 𝐻 ⊆ ℝ ) ) → inf ( 𝐻 , ℝ , < ) ∈ 𝐻 ) |
| 57 |
47 50 52 55 56
|
syl13anc |
⊢ ( 𝜑 → inf ( 𝐻 , ℝ , < ) ∈ 𝐻 ) |
| 58 |
45 57
|
sseldd |
⊢ ( 𝜑 → inf ( 𝐻 , ℝ , < ) ∈ ℝ+ ) |
| 59 |
7 58
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 60 |
|
rpxr |
⊢ ( 𝐸 ∈ ℝ+ → 𝐸 ∈ ℝ* ) |
| 61 |
59 60
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ ℝ* ) |
| 62 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
| 63 |
62
|
blopn |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ∧ 𝐹 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝐸 ∈ ℝ* ) → ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 64 |
10 17 61 63
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 65 |
8
|
a1i |
⊢ ( 𝜑 → 𝑉 = ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 ) ) |
| 66 |
1
|
rrxtopnfi |
⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( MetOpen ‘ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) ) |
| 67 |
9
|
eqcomi |
⊢ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) = 𝐷 |
| 68 |
67
|
a1i |
⊢ ( 𝜑 → ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) = 𝐷 ) |
| 69 |
68
|
fveq2d |
⊢ ( 𝜑 → ( MetOpen ‘ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) = ( MetOpen ‘ 𝐷 ) ) |
| 70 |
66 69
|
eqtrd |
⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( MetOpen ‘ 𝐷 ) ) |
| 71 |
65 70
|
eleq12d |
⊢ ( 𝜑 → ( 𝑉 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ↔ ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 ) ∈ ( MetOpen ‘ 𝐷 ) ) ) |
| 72 |
64 71
|
mpbird |
⊢ ( 𝜑 → 𝑉 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
| 73 |
|
xmetpsmet |
⊢ ( 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) → 𝐷 ∈ ( PsMet ‘ ( ℝ ↑m 𝑋 ) ) ) |
| 74 |
10 73
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( PsMet ‘ ( ℝ ↑m 𝑋 ) ) ) |
| 75 |
|
blcntrps |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ ( ℝ ↑m 𝑋 ) ) ∧ 𝐹 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝐸 ∈ ℝ+ ) → 𝐹 ∈ ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 ) ) |
| 76 |
74 17 59 75
|
syl3anc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 ) ) |
| 77 |
65
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 ) = 𝑉 ) |
| 78 |
76 77
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 79 |
|
nfv |
⊢ Ⅎ 𝑔 𝜑 |
| 80 |
|
elmapfn |
⊢ ( 𝑔 ∈ ( ℝ ↑m 𝑋 ) → 𝑔 Fn 𝑋 ) |
| 81 |
80
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) → 𝑔 Fn 𝑋 ) |
| 82 |
27
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑖 ) ∈ ℝ* ) |
| 83 |
28
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ* ) |
| 84 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) |
| 85 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ 𝑋 ) |
| 86 |
|
elmapi |
⊢ ( 𝑔 ∈ ( ℝ ↑m 𝑋 ) → 𝑔 : 𝑋 ⟶ ℝ ) |
| 87 |
86
|
adantr |
⊢ ( ( 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑔 : 𝑋 ⟶ ℝ ) |
| 88 |
|
simpr |
⊢ ( ( 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ 𝑋 ) |
| 89 |
87 88
|
ffvelcdmd |
⊢ ( ( 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑔 ‘ 𝑖 ) ∈ ℝ ) |
| 90 |
84 85 89
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑔 ‘ 𝑖 ) ∈ ℝ ) |
| 91 |
26
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑖 ) ∈ ℝ ) |
| 92 |
53 59
|
sselid |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 𝐸 ∈ ℝ ) |
| 94 |
24 93
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑖 ) − 𝐸 ) ∈ ℝ ) |
| 95 |
94
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑖 ) − 𝐸 ) ∈ ℝ ) |
| 96 |
53 40
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ∈ ℝ ) |
| 97 |
7
|
a1i |
⊢ ( 𝜑 → 𝐸 = inf ( 𝐻 , ℝ , < ) ) |
| 98 |
|
infxrrefi |
⊢ ( ( 𝐻 ⊆ ℝ ∧ 𝐻 ∈ Fin ∧ 𝐻 ≠ ∅ ) → inf ( 𝐻 , ℝ* , < ) = inf ( 𝐻 , ℝ , < ) ) |
| 99 |
55 50 52 98
|
syl3anc |
⊢ ( 𝜑 → inf ( 𝐻 , ℝ* , < ) = inf ( 𝐻 , ℝ , < ) ) |
| 100 |
99
|
eqcomd |
⊢ ( 𝜑 → inf ( 𝐻 , ℝ , < ) = inf ( 𝐻 , ℝ* , < ) ) |
| 101 |
97 100
|
eqtrd |
⊢ ( 𝜑 → 𝐸 = inf ( 𝐻 , ℝ* , < ) ) |
| 102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 𝐸 = inf ( 𝐻 , ℝ* , < ) ) |
| 103 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 104 |
103
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ* ) |
| 105 |
55 104
|
sstrd |
⊢ ( 𝜑 → 𝐻 ⊆ ℝ* ) |
| 106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 𝐻 ⊆ ℝ* ) |
| 107 |
40
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ∈ V ) |
| 108 |
42
|
elrnmpt1 |
⊢ ( ( 𝑖 ∈ 𝑋 ∧ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ∈ V ) → if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ∈ ran ( 𝑖 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) ) |
| 109 |
21 107 108
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ∈ ran ( 𝑖 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) ) |
| 110 |
109 6
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ∈ 𝐻 ) |
| 111 |
|
infxrlb |
⊢ ( ( 𝐻 ⊆ ℝ* ∧ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ∈ 𝐻 ) → inf ( 𝐻 , ℝ* , < ) ≤ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) |
| 112 |
106 110 111
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → inf ( 𝐻 , ℝ* , < ) ≤ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) |
| 113 |
102 112
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 𝐸 ≤ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) |
| 114 |
|
min2 |
⊢ ( ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ∈ ℝ ) → if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) |
| 115 |
25 34 114
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) |
| 116 |
93 96 34 113 115
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 𝐸 ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) |
| 117 |
93 24 26 116
|
lesubd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑖 ) ≤ ( ( 𝐹 ‘ 𝑖 ) − 𝐸 ) ) |
| 118 |
117
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑖 ) ≤ ( ( 𝐹 ‘ 𝑖 ) − 𝐸 ) ) |
| 119 |
24
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑖 ) ∈ ℝ ) |
| 120 |
89
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑔 ‘ 𝑖 ) ∈ ℝ ) |
| 121 |
119 120
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑖 ) − ( 𝑔 ‘ 𝑖 ) ) ∈ ℝ ) |
| 122 |
121
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑖 ) − ( 𝑔 ‘ 𝑖 ) ) ∈ ℝ ) |
| 123 |
1 9
|
rrndsmet |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
| 124 |
123
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
| 125 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝐹 ∈ ( ℝ ↑m 𝑋 ) ) |
| 126 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) |
| 127 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) ∧ 𝐹 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) → ( 𝐹 𝐷 𝑔 ) ∈ ℝ ) |
| 128 |
124 125 126 127
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐹 𝐷 𝑔 ) ∈ ℝ ) |
| 129 |
128
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐹 𝐷 𝑔 ) ∈ ℝ ) |
| 130 |
93
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝐸 ∈ ℝ ) |
| 131 |
130
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → 𝐸 ∈ ℝ ) |
| 132 |
121
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑖 ) − ( 𝑔 ‘ 𝑖 ) ) ∈ ℂ ) |
| 133 |
132
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − ( 𝑔 ‘ 𝑖 ) ) ) ∈ ℝ ) |
| 134 |
121
|
leabsd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑖 ) − ( 𝑔 ‘ 𝑖 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 135 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝑋 ∈ Fin ) |
| 136 |
|
ixpf |
⊢ ( 𝐹 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) → 𝐹 : 𝑋 ⟶ ∪ 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) |
| 137 |
5 136
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ∪ 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) |
| 138 |
15
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ⊆ ℝ ) |
| 139 |
|
iunss |
⊢ ( ∪ 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ⊆ ℝ ↔ ∀ 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ⊆ ℝ ) |
| 140 |
138 139
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ⊆ ℝ ) |
| 141 |
137 140
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 142 |
141
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ ℝ ) |
| 143 |
126 86
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝑔 : 𝑋 ⟶ ℝ ) |
| 144 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ 𝑋 ) |
| 145 |
|
eqid |
⊢ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) |
| 146 |
135 142 143 144 145
|
rrnprjdstle |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − ( 𝑔 ‘ 𝑖 ) ) ) ≤ ( 𝐹 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑔 ) ) |
| 147 |
|
eqid |
⊢ ( ℝ^ ‘ 𝑋 ) = ( ℝ^ ‘ 𝑋 ) |
| 148 |
|
eqid |
⊢ ( ℝ ↑m 𝑋 ) = ( ℝ ↑m 𝑋 ) |
| 149 |
147 148
|
rrxdsfi |
⊢ ( 𝑋 ∈ Fin → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| 150 |
1 149
|
syl |
⊢ ( 𝜑 → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) , 𝑔 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| 151 |
150 68
|
eqtrd |
⊢ ( 𝜑 → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = 𝐷 ) |
| 152 |
151
|
oveqd |
⊢ ( 𝜑 → ( 𝐹 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑔 ) = ( 𝐹 𝐷 𝑔 ) ) |
| 153 |
152
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐹 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑔 ) = ( 𝐹 𝐷 𝑔 ) ) |
| 154 |
146 153
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − ( 𝑔 ‘ 𝑖 ) ) ) ≤ ( 𝐹 𝐷 𝑔 ) ) |
| 155 |
121 133 128 134 154
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑖 ) − ( 𝑔 ‘ 𝑖 ) ) ≤ ( 𝐹 𝐷 𝑔 ) ) |
| 156 |
155
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑖 ) − ( 𝑔 ‘ 𝑖 ) ) ≤ ( 𝐹 𝐷 𝑔 ) ) |
| 157 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐹 𝐷 𝑔 ) < 𝐸 ) |
| 158 |
122 129 131 156 157
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑖 ) − ( 𝑔 ‘ 𝑖 ) ) < 𝐸 ) |
| 159 |
|
ltsub23 |
⊢ ( ( ( 𝐹 ‘ 𝑖 ) ∈ ℝ ∧ ( 𝑔 ‘ 𝑖 ) ∈ ℝ ∧ 𝐸 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑖 ) − ( 𝑔 ‘ 𝑖 ) ) < 𝐸 ↔ ( ( 𝐹 ‘ 𝑖 ) − 𝐸 ) < ( 𝑔 ‘ 𝑖 ) ) ) |
| 160 |
119 120 130 159
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑖 ) − ( 𝑔 ‘ 𝑖 ) ) < 𝐸 ↔ ( ( 𝐹 ‘ 𝑖 ) − 𝐸 ) < ( 𝑔 ‘ 𝑖 ) ) ) |
| 161 |
160
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑖 ) − ( 𝑔 ‘ 𝑖 ) ) < 𝐸 ↔ ( ( 𝐹 ‘ 𝑖 ) − 𝐸 ) < ( 𝑔 ‘ 𝑖 ) ) ) |
| 162 |
158 161
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑖 ) − 𝐸 ) < ( 𝑔 ‘ 𝑖 ) ) |
| 163 |
91 95 90 118 162
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑖 ) < ( 𝑔 ‘ 𝑖 ) ) |
| 164 |
24 93
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑖 ) + 𝐸 ) ∈ ℝ ) |
| 165 |
164
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑖 ) + 𝐸 ) ∈ ℝ ) |
| 166 |
19
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
| 167 |
120 119
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑔 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ∈ ℝ ) |
| 168 |
167
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑔 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ∈ ℝ ) |
| 169 |
167
|
leabsd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑔 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( abs ‘ ( ( 𝑔 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 170 |
120
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑔 ‘ 𝑖 ) ∈ ℂ ) |
| 171 |
119
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑖 ) ∈ ℂ ) |
| 172 |
170 171
|
abssubd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑔 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 173 |
169 172
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑔 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 174 |
167 133 128 173 154
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑔 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( 𝐹 𝐷 𝑔 ) ) |
| 175 |
174
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑔 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( 𝐹 𝐷 𝑔 ) ) |
| 176 |
168 129 131 175 157
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑔 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) < 𝐸 ) |
| 177 |
119
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑖 ) ∈ ℝ ) |
| 178 |
90 177 131
|
ltsubadd2d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑔 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) < 𝐸 ↔ ( 𝑔 ‘ 𝑖 ) < ( ( 𝐹 ‘ 𝑖 ) + 𝐸 ) ) ) |
| 179 |
176 178
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑔 ‘ 𝑖 ) < ( ( 𝐹 ‘ 𝑖 ) + 𝐸 ) ) |
| 180 |
|
min1 |
⊢ ( ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ∈ ℝ ) → if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ≤ ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ) |
| 181 |
25 34 180
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ≤ ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ≤ ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ) |
| 182 |
93 96 25 113 181
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 𝐸 ≤ ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ) |
| 183 |
24 93 19
|
leaddsub2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑖 ) + 𝐸 ) ≤ ( 𝐵 ‘ 𝑖 ) ↔ 𝐸 ≤ ( ( 𝐵 ‘ 𝑖 ) − ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 184 |
182 183
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑖 ) + 𝐸 ) ≤ ( 𝐵 ‘ 𝑖 ) ) |
| 185 |
184
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑖 ) + 𝐸 ) ≤ ( 𝐵 ‘ 𝑖 ) ) |
| 186 |
90 165 166 179 185
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑔 ‘ 𝑖 ) < ( 𝐵 ‘ 𝑖 ) ) |
| 187 |
82 83 90 163 186
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑔 ‘ 𝑖 ) ∈ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) |
| 188 |
187
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) → ∀ 𝑖 ∈ 𝑋 ( 𝑔 ‘ 𝑖 ) ∈ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) |
| 189 |
81 188
|
jca |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) → ( 𝑔 Fn 𝑋 ∧ ∀ 𝑖 ∈ 𝑋 ( 𝑔 ‘ 𝑖 ) ∈ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) |
| 190 |
|
vex |
⊢ 𝑔 ∈ V |
| 191 |
190
|
elixp |
⊢ ( 𝑔 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ↔ ( 𝑔 Fn 𝑋 ∧ ∀ 𝑖 ∈ 𝑋 ( 𝑔 ‘ 𝑖 ) ∈ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) |
| 192 |
189 191
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℝ ↑m 𝑋 ) ∧ ( 𝐹 𝐷 𝑔 ) < 𝐸 ) → 𝑔 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) |
| 193 |
79 74 17 61 192
|
ballss3 |
⊢ ( 𝜑 → ( 𝐹 ( ball ‘ 𝐷 ) 𝐸 ) ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) |
| 194 |
65 193
|
eqsstrd |
⊢ ( 𝜑 → 𝑉 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) |
| 195 |
78 194
|
jca |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑉 ∧ 𝑉 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) |
| 196 |
|
eleq2 |
⊢ ( 𝑣 = 𝑉 → ( 𝐹 ∈ 𝑣 ↔ 𝐹 ∈ 𝑉 ) ) |
| 197 |
|
sseq1 |
⊢ ( 𝑣 = 𝑉 → ( 𝑣 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ↔ 𝑉 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) |
| 198 |
196 197
|
anbi12d |
⊢ ( 𝑣 = 𝑉 → ( ( 𝐹 ∈ 𝑣 ∧ 𝑣 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ↔ ( 𝐹 ∈ 𝑉 ∧ 𝑉 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) ) |
| 199 |
198
|
rspcev |
⊢ ( ( 𝑉 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑉 ∧ 𝑉 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝐹 ∈ 𝑣 ∧ 𝑣 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) |
| 200 |
72 195 199
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝐹 ∈ 𝑣 ∧ 𝑣 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) |