Step |
Hyp |
Ref |
Expression |
1 |
|
mopni.1 |
β’ π½ = ( MetOpen β π· ) |
2 |
1
|
blssopn |
β’ ( π· β ( βMet β π ) β ran ( ball β π· ) β π½ ) |
3 |
2
|
3ad2ant1 |
β’ ( ( π· β ( βMet β π ) β§ π β π β§ π
β β* ) β ran ( ball β π· ) β π½ ) |
4 |
|
blelrn |
β’ ( ( π· β ( βMet β π ) β§ π β π β§ π
β β* ) β ( π ( ball β π· ) π
) β ran ( ball β π· ) ) |
5 |
3 4
|
sseldd |
β’ ( ( π· β ( βMet β π ) β§ π β π β§ π
β β* ) β ( π ( ball β π· ) π
) β π½ ) |