Step |
Hyp |
Ref |
Expression |
1 |
|
ioorrnopn.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
ioorrnopn.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
3 |
|
ioorrnopn.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
4 |
|
p0ex |
⊢ { ∅ } ∈ V |
5 |
4
|
prid2 |
⊢ { ∅ } ∈ { ∅ , { ∅ } } |
6 |
5
|
a1i |
⊢ ( 𝑋 = ∅ → { ∅ } ∈ { ∅ , { ∅ } } ) |
7 |
|
ixpeq1 |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) = X 𝑖 ∈ ∅ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) |
8 |
|
ixp0x |
⊢ X 𝑖 ∈ ∅ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) = { ∅ } |
9 |
8
|
a1i |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ ∅ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) = { ∅ } ) |
10 |
7 9
|
eqtrd |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) = { ∅ } ) |
11 |
|
2fveq3 |
⊢ ( 𝑋 = ∅ → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) ) |
12 |
|
rrxtopn0b |
⊢ ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) = { ∅ , { ∅ } } |
13 |
12
|
a1i |
⊢ ( 𝑋 = ∅ → ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) = { ∅ , { ∅ } } ) |
14 |
11 13
|
eqtrd |
⊢ ( 𝑋 = ∅ → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = { ∅ , { ∅ } } ) |
15 |
10 14
|
eleq12d |
⊢ ( 𝑋 = ∅ → ( X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ↔ { ∅ } ∈ { ∅ , { ∅ } } ) ) |
16 |
6 15
|
mpbird |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
18 |
|
neqne |
⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≠ ∅ ) |
20 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐴 ‘ 𝑖 ) = ( 𝐴 ‘ 𝑗 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) ) |
22 |
20 21
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) = ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) |
23 |
22
|
cbvixpv |
⊢ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) = X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) |
24 |
23
|
eleq2i |
⊢ ( 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ↔ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) |
25 |
24
|
biimpi |
⊢ ( 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) → 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) → 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) |
27 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) → 𝑋 ∈ Fin ) |
28 |
24 27
|
sylan2br |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) → 𝑋 ∈ Fin ) |
29 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) → 𝑋 ≠ ∅ ) |
30 |
24 29
|
sylan2br |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) → 𝑋 ≠ ∅ ) |
31 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) → 𝐴 : 𝑋 ⟶ ℝ ) |
32 |
24 31
|
sylan2br |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) → 𝐴 : 𝑋 ⟶ ℝ ) |
33 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) → 𝐵 : 𝑋 ⟶ ℝ ) |
34 |
24 33
|
sylan2br |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) → 𝐵 : 𝑋 ⟶ ℝ ) |
35 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) → 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) |
36 |
24 35
|
sylan2br |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) → 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) |
37 |
|
eqid |
⊢ ran ( 𝑖 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ≤ ( ( 𝑓 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) , ( ( 𝑓 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) = ran ( 𝑖 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ≤ ( ( 𝑓 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) , ( ( 𝑓 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) |
38 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝐵 ‘ 𝑗 ) = ( 𝐵 ‘ 𝑖 ) ) |
39 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑓 ‘ 𝑗 ) = ( 𝑓 ‘ 𝑖 ) ) |
40 |
38 39
|
oveq12d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝐵 ‘ 𝑗 ) − ( 𝑓 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ) |
41 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝐴 ‘ 𝑗 ) = ( 𝐴 ‘ 𝑖 ) ) |
42 |
39 41
|
oveq12d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑓 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝑓 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) |
43 |
40 42
|
breq12d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝑓 ‘ 𝑗 ) ) ≤ ( ( 𝑓 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ↔ ( ( 𝐵 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ≤ ( ( 𝑓 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) |
44 |
43 40 42
|
ifbieq12d |
⊢ ( 𝑗 = 𝑖 → if ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝑓 ‘ 𝑗 ) ) ≤ ( ( 𝑓 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) , ( ( 𝐵 ‘ 𝑗 ) − ( 𝑓 ‘ 𝑗 ) ) , ( ( 𝑓 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) = if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ≤ ( ( 𝑓 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) , ( ( 𝑓 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) |
45 |
44
|
cbvmptv |
⊢ ( 𝑗 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝑓 ‘ 𝑗 ) ) ≤ ( ( 𝑓 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) , ( ( 𝐵 ‘ 𝑗 ) − ( 𝑓 ‘ 𝑗 ) ) , ( ( 𝑓 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) ) = ( 𝑖 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ≤ ( ( 𝑓 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) , ( ( 𝑓 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) |
46 |
45
|
rneqi |
⊢ ran ( 𝑗 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝑓 ‘ 𝑗 ) ) ≤ ( ( 𝑓 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) , ( ( 𝐵 ‘ 𝑗 ) − ( 𝑓 ‘ 𝑗 ) ) , ( ( 𝑓 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) ) = ran ( 𝑖 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ≤ ( ( 𝑓 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) , ( ( 𝑓 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) |
47 |
46
|
infeq1i |
⊢ inf ( ran ( 𝑗 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝑓 ‘ 𝑗 ) ) ≤ ( ( 𝑓 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) , ( ( 𝐵 ‘ 𝑗 ) − ( 𝑓 ‘ 𝑗 ) ) , ( ( 𝑓 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) ) , ℝ , < ) = inf ( ran ( 𝑖 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ≤ ( ( 𝑓 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) , ( ( 𝐵 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) , ( ( 𝑓 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ) , ℝ , < ) |
48 |
|
eqid |
⊢ ( 𝑓 ( ball ‘ ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) , 𝑏 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑎 ‘ 𝑘 ) − ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) inf ( ran ( 𝑗 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝑓 ‘ 𝑗 ) ) ≤ ( ( 𝑓 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) , ( ( 𝐵 ‘ 𝑗 ) − ( 𝑓 ‘ 𝑗 ) ) , ( ( 𝑓 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) ) , ℝ , < ) ) = ( 𝑓 ( ball ‘ ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) , 𝑏 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑎 ‘ 𝑘 ) − ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) inf ( ran ( 𝑗 ∈ 𝑋 ↦ if ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝑓 ‘ 𝑗 ) ) ≤ ( ( 𝑓 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) , ( ( 𝐵 ‘ 𝑗 ) − ( 𝑓 ‘ 𝑗 ) ) , ( ( 𝑓 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) ) , ℝ , < ) ) |
49 |
|
fveq1 |
⊢ ( 𝑎 = 𝑔 → ( 𝑎 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) |
50 |
49
|
oveq1d |
⊢ ( 𝑎 = 𝑔 → ( ( 𝑎 ‘ 𝑘 ) − ( 𝑏 ‘ 𝑘 ) ) = ( ( 𝑔 ‘ 𝑘 ) − ( 𝑏 ‘ 𝑘 ) ) ) |
51 |
50
|
oveq1d |
⊢ ( 𝑎 = 𝑔 → ( ( ( 𝑎 ‘ 𝑘 ) − ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝑔 ‘ 𝑘 ) − ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) ) |
52 |
51
|
sumeq2sdv |
⊢ ( 𝑎 = 𝑔 → Σ 𝑘 ∈ 𝑋 ( ( ( 𝑎 ‘ 𝑘 ) − ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑘 ) − ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) ) |
53 |
52
|
fveq2d |
⊢ ( 𝑎 = 𝑔 → ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑎 ‘ 𝑘 ) − ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) ) = ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑘 ) − ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
54 |
|
fveq1 |
⊢ ( 𝑏 = ℎ → ( 𝑏 ‘ 𝑘 ) = ( ℎ ‘ 𝑘 ) ) |
55 |
54
|
oveq2d |
⊢ ( 𝑏 = ℎ → ( ( 𝑔 ‘ 𝑘 ) − ( 𝑏 ‘ 𝑘 ) ) = ( ( 𝑔 ‘ 𝑘 ) − ( ℎ ‘ 𝑘 ) ) ) |
56 |
55
|
oveq1d |
⊢ ( 𝑏 = ℎ → ( ( ( 𝑔 ‘ 𝑘 ) − ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝑔 ‘ 𝑘 ) − ( ℎ ‘ 𝑘 ) ) ↑ 2 ) ) |
57 |
56
|
sumeq2sdv |
⊢ ( 𝑏 = ℎ → Σ 𝑘 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑘 ) − ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑘 ) − ( ℎ ‘ 𝑘 ) ) ↑ 2 ) ) |
58 |
57
|
fveq2d |
⊢ ( 𝑏 = ℎ → ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑘 ) − ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) ) = ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑘 ) − ( ℎ ‘ 𝑘 ) ) ↑ 2 ) ) ) |
59 |
53 58
|
cbvmpov |
⊢ ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) , 𝑏 ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑎 ‘ 𝑘 ) − ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) ) ) = ( 𝑔 ∈ ( ℝ ↑m 𝑋 ) , ℎ ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑘 ) − ( ℎ ‘ 𝑘 ) ) ↑ 2 ) ) ) |
60 |
28 30 32 34 36 37 47 48 59
|
ioorrnopnlem |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) |
61 |
26 60
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) |
62 |
61
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ∀ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∃ 𝑣 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) |
63 |
|
eqid |
⊢ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) |
64 |
63
|
rrxtop |
⊢ ( 𝑋 ∈ Fin → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ Top ) |
65 |
1 64
|
syl |
⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ Top ) |
66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ Top ) |
67 |
|
eltop2 |
⊢ ( ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ Top → ( X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ↔ ∀ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∃ 𝑣 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) ) |
68 |
66 67
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ↔ ∀ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∃ 𝑣 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) ) |
69 |
62 68
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
70 |
19 69
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
71 |
17 70
|
pm2.61dan |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |