| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioorrnopn.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 2 |  | ioorrnopn.a | ⊢ ( 𝜑  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 3 |  | ioorrnopn.b | ⊢ ( 𝜑  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 4 |  | p0ex | ⊢ { ∅ }  ∈  V | 
						
							| 5 | 4 | prid2 | ⊢ { ∅ }  ∈  { ∅ ,  { ∅ } } | 
						
							| 6 | 5 | a1i | ⊢ ( 𝑋  =  ∅  →  { ∅ }  ∈  { ∅ ,  { ∅ } } ) | 
						
							| 7 |  | ixpeq1 | ⊢ ( 𝑋  =  ∅  →  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  =  X 𝑖  ∈  ∅ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 8 |  | ixp0x | ⊢ X 𝑖  ∈  ∅ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  =  { ∅ } | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑋  =  ∅  →  X 𝑖  ∈  ∅ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  =  { ∅ } ) | 
						
							| 10 | 7 9 | eqtrd | ⊢ ( 𝑋  =  ∅  →  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  =  { ∅ } ) | 
						
							| 11 |  | 2fveq3 | ⊢ ( 𝑋  =  ∅  →  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  =  ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) ) | 
						
							| 12 |  | rrxtopn0b | ⊢ ( TopOpen ‘ ( ℝ^ ‘ ∅ ) )  =  { ∅ ,  { ∅ } } | 
						
							| 13 | 12 | a1i | ⊢ ( 𝑋  =  ∅  →  ( TopOpen ‘ ( ℝ^ ‘ ∅ ) )  =  { ∅ ,  { ∅ } } ) | 
						
							| 14 | 11 13 | eqtrd | ⊢ ( 𝑋  =  ∅  →  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  =  { ∅ ,  { ∅ } } ) | 
						
							| 15 | 10 14 | eleq12d | ⊢ ( 𝑋  =  ∅  →  ( X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  ↔  { ∅ }  ∈  { ∅ ,  { ∅ } } ) ) | 
						
							| 16 | 6 15 | mpbird | ⊢ ( 𝑋  =  ∅  →  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) | 
						
							| 18 |  | neqne | ⊢ ( ¬  𝑋  =  ∅  →  𝑋  ≠  ∅ ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  𝑋  ≠  ∅ ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐴 ‘ 𝑖 )  =  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐵 ‘ 𝑖 )  =  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 22 | 20 21 | oveq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  =  ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) | 
						
							| 23 | 22 | cbvixpv | ⊢ X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  =  X 𝑗  ∈  𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 24 | 23 | eleq2i | ⊢ ( 𝑓  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ↔  𝑓  ∈  X 𝑗  ∈  𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) | 
						
							| 25 | 24 | biimpi | ⊢ ( 𝑓  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  →  𝑓  ∈  X 𝑗  ∈  𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  𝑓  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) )  →  𝑓  ∈  X 𝑗  ∈  𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) | 
						
							| 27 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  𝑓  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) )  →  𝑋  ∈  Fin ) | 
						
							| 28 | 24 27 | sylan2br | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  𝑓  ∈  X 𝑗  ∈  𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) )  →  𝑋  ∈  Fin ) | 
						
							| 29 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  𝑓  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) )  →  𝑋  ≠  ∅ ) | 
						
							| 30 | 24 29 | sylan2br | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  𝑓  ∈  X 𝑗  ∈  𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) )  →  𝑋  ≠  ∅ ) | 
						
							| 31 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  𝑓  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) )  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 32 | 24 31 | sylan2br | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  𝑓  ∈  X 𝑗  ∈  𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) )  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 33 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  𝑓  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) )  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 34 | 24 33 | sylan2br | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  𝑓  ∈  X 𝑗  ∈  𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) )  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 35 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  𝑓  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) )  →  𝑓  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 36 | 24 35 | sylan2br | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  𝑓  ∈  X 𝑗  ∈  𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) )  →  𝑓  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 37 |  | eqid | ⊢ ran  ( 𝑖  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝑓 ‘ 𝑖 ) )  ≤  ( ( 𝑓 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝑓 ‘ 𝑖 ) ) ,  ( ( 𝑓 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) )  =  ran  ( 𝑖  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝑓 ‘ 𝑖 ) )  ≤  ( ( 𝑓 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝑓 ‘ 𝑖 ) ) ,  ( ( 𝑓 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) ) | 
						
							| 38 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝐵 ‘ 𝑗 )  =  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 39 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑓 ‘ 𝑗 )  =  ( 𝑓 ‘ 𝑖 ) ) | 
						
							| 40 | 38 39 | oveq12d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝑓 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝑓 ‘ 𝑖 ) ) ) | 
						
							| 41 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝐴 ‘ 𝑗 )  =  ( 𝐴 ‘ 𝑖 ) ) | 
						
							| 42 | 39 41 | oveq12d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑓 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝑓 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) | 
						
							| 43 | 40 42 | breq12d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 𝐵 ‘ 𝑗 )  −  ( 𝑓 ‘ 𝑗 ) )  ≤  ( ( 𝑓 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) )  ↔  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝑓 ‘ 𝑖 ) )  ≤  ( ( 𝑓 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) ) | 
						
							| 44 | 43 40 42 | ifbieq12d | ⊢ ( 𝑗  =  𝑖  →  if ( ( ( 𝐵 ‘ 𝑗 )  −  ( 𝑓 ‘ 𝑗 ) )  ≤  ( ( 𝑓 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ,  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝑓 ‘ 𝑗 ) ) ,  ( ( 𝑓 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) )  =  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝑓 ‘ 𝑖 ) )  ≤  ( ( 𝑓 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝑓 ‘ 𝑖 ) ) ,  ( ( 𝑓 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) ) | 
						
							| 45 | 44 | cbvmptv | ⊢ ( 𝑗  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑗 )  −  ( 𝑓 ‘ 𝑗 ) )  ≤  ( ( 𝑓 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ,  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝑓 ‘ 𝑗 ) ) ,  ( ( 𝑓 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ) )  =  ( 𝑖  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝑓 ‘ 𝑖 ) )  ≤  ( ( 𝑓 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝑓 ‘ 𝑖 ) ) ,  ( ( 𝑓 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) ) | 
						
							| 46 | 45 | rneqi | ⊢ ran  ( 𝑗  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑗 )  −  ( 𝑓 ‘ 𝑗 ) )  ≤  ( ( 𝑓 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ,  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝑓 ‘ 𝑗 ) ) ,  ( ( 𝑓 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ) )  =  ran  ( 𝑖  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝑓 ‘ 𝑖 ) )  ≤  ( ( 𝑓 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝑓 ‘ 𝑖 ) ) ,  ( ( 𝑓 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) ) | 
						
							| 47 | 46 | infeq1i | ⊢ inf ( ran  ( 𝑗  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑗 )  −  ( 𝑓 ‘ 𝑗 ) )  ≤  ( ( 𝑓 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ,  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝑓 ‘ 𝑗 ) ) ,  ( ( 𝑓 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ) ) ,  ℝ ,   <  )  =  inf ( ran  ( 𝑖  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑖 )  −  ( 𝑓 ‘ 𝑖 ) )  ≤  ( ( 𝑓 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ,  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝑓 ‘ 𝑖 ) ) ,  ( ( 𝑓 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) ) ,  ℝ ,   <  ) | 
						
							| 48 |  | eqid | ⊢ ( 𝑓 ( ball ‘ ( 𝑎  ∈  ( ℝ  ↑m  𝑋 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑎 ‘ 𝑘 )  −  ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) inf ( ran  ( 𝑗  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑗 )  −  ( 𝑓 ‘ 𝑗 ) )  ≤  ( ( 𝑓 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ,  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝑓 ‘ 𝑗 ) ) ,  ( ( 𝑓 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ) ) ,  ℝ ,   <  ) )  =  ( 𝑓 ( ball ‘ ( 𝑎  ∈  ( ℝ  ↑m  𝑋 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑎 ‘ 𝑘 )  −  ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) inf ( ran  ( 𝑗  ∈  𝑋  ↦  if ( ( ( 𝐵 ‘ 𝑗 )  −  ( 𝑓 ‘ 𝑗 ) )  ≤  ( ( 𝑓 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ,  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝑓 ‘ 𝑗 ) ) ,  ( ( 𝑓 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ) ) ,  ℝ ,   <  ) ) | 
						
							| 49 |  | fveq1 | ⊢ ( 𝑎  =  𝑔  →  ( 𝑎 ‘ 𝑘 )  =  ( 𝑔 ‘ 𝑘 ) ) | 
						
							| 50 | 49 | oveq1d | ⊢ ( 𝑎  =  𝑔  →  ( ( 𝑎 ‘ 𝑘 )  −  ( 𝑏 ‘ 𝑘 ) )  =  ( ( 𝑔 ‘ 𝑘 )  −  ( 𝑏 ‘ 𝑘 ) ) ) | 
						
							| 51 | 50 | oveq1d | ⊢ ( 𝑎  =  𝑔  →  ( ( ( 𝑎 ‘ 𝑘 )  −  ( 𝑏 ‘ 𝑘 ) ) ↑ 2 )  =  ( ( ( 𝑔 ‘ 𝑘 )  −  ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) ) | 
						
							| 52 | 51 | sumeq2sdv | ⊢ ( 𝑎  =  𝑔  →  Σ 𝑘  ∈  𝑋 ( ( ( 𝑎 ‘ 𝑘 )  −  ( 𝑏 ‘ 𝑘 ) ) ↑ 2 )  =  Σ 𝑘  ∈  𝑋 ( ( ( 𝑔 ‘ 𝑘 )  −  ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) ) | 
						
							| 53 | 52 | fveq2d | ⊢ ( 𝑎  =  𝑔  →  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑎 ‘ 𝑘 )  −  ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) )  =  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑔 ‘ 𝑘 )  −  ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) ) ) | 
						
							| 54 |  | fveq1 | ⊢ ( 𝑏  =  ℎ  →  ( 𝑏 ‘ 𝑘 )  =  ( ℎ ‘ 𝑘 ) ) | 
						
							| 55 | 54 | oveq2d | ⊢ ( 𝑏  =  ℎ  →  ( ( 𝑔 ‘ 𝑘 )  −  ( 𝑏 ‘ 𝑘 ) )  =  ( ( 𝑔 ‘ 𝑘 )  −  ( ℎ ‘ 𝑘 ) ) ) | 
						
							| 56 | 55 | oveq1d | ⊢ ( 𝑏  =  ℎ  →  ( ( ( 𝑔 ‘ 𝑘 )  −  ( 𝑏 ‘ 𝑘 ) ) ↑ 2 )  =  ( ( ( 𝑔 ‘ 𝑘 )  −  ( ℎ ‘ 𝑘 ) ) ↑ 2 ) ) | 
						
							| 57 | 56 | sumeq2sdv | ⊢ ( 𝑏  =  ℎ  →  Σ 𝑘  ∈  𝑋 ( ( ( 𝑔 ‘ 𝑘 )  −  ( 𝑏 ‘ 𝑘 ) ) ↑ 2 )  =  Σ 𝑘  ∈  𝑋 ( ( ( 𝑔 ‘ 𝑘 )  −  ( ℎ ‘ 𝑘 ) ) ↑ 2 ) ) | 
						
							| 58 | 57 | fveq2d | ⊢ ( 𝑏  =  ℎ  →  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑔 ‘ 𝑘 )  −  ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) )  =  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑔 ‘ 𝑘 )  −  ( ℎ ‘ 𝑘 ) ) ↑ 2 ) ) ) | 
						
							| 59 | 53 58 | cbvmpov | ⊢ ( 𝑎  ∈  ( ℝ  ↑m  𝑋 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑎 ‘ 𝑘 )  −  ( 𝑏 ‘ 𝑘 ) ) ↑ 2 ) ) )  =  ( 𝑔  ∈  ( ℝ  ↑m  𝑋 ) ,  ℎ  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝑋 ( ( ( 𝑔 ‘ 𝑘 )  −  ( ℎ ‘ 𝑘 ) ) ↑ 2 ) ) ) | 
						
							| 60 | 28 30 32 34 36 37 47 48 59 | ioorrnopnlem | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  𝑓  ∈  X 𝑗  ∈  𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) )  →  ∃ 𝑣  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝑓  ∈  𝑣  ∧  𝑣  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) | 
						
							| 61 | 26 60 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  𝑓  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) )  →  ∃ 𝑣  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝑓  ∈  𝑣  ∧  𝑣  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) | 
						
							| 62 | 61 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ∀ 𝑓  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∃ 𝑣  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝑓  ∈  𝑣  ∧  𝑣  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) | 
						
							| 63 |  | eqid | ⊢ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  =  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) | 
						
							| 64 | 63 | rrxtop | ⊢ ( 𝑋  ∈  Fin  →  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  ∈  Top ) | 
						
							| 65 | 1 64 | syl | ⊢ ( 𝜑  →  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  ∈  Top ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  ∈  Top ) | 
						
							| 67 |  | eltop2 | ⊢ ( ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  ∈  Top  →  ( X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  ↔  ∀ 𝑓  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∃ 𝑣  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝑓  ∈  𝑣  ∧  𝑣  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) ) | 
						
							| 68 | 66 67 | syl | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  ↔  ∀ 𝑓  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∃ 𝑣  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝑓  ∈  𝑣  ∧  𝑣  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) ) | 
						
							| 69 | 62 68 | mpbird | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) | 
						
							| 70 | 19 69 | syldan | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) | 
						
							| 71 | 17 70 | pm2.61dan | ⊢ ( 𝜑  →  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |