Metamath Proof Explorer


Theorem ioorrnopn

Description: The indexed product of open intervals is an open set in ( RR^X ) . (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses ioorrnopn.x φ X Fin
ioorrnopn.a φ A : X
ioorrnopn.b φ B : X
Assertion ioorrnopn φ i X A i B i TopOpen X

Proof

Step Hyp Ref Expression
1 ioorrnopn.x φ X Fin
2 ioorrnopn.a φ A : X
3 ioorrnopn.b φ B : X
4 p0ex V
5 4 prid2
6 5 a1i X =
7 ixpeq1 X = i X A i B i = i A i B i
8 ixp0x i A i B i =
9 8 a1i X = i A i B i =
10 7 9 eqtrd X = i X A i B i =
11 2fveq3 X = TopOpen X = TopOpen
12 rrxtopn0b TopOpen =
13 12 a1i X = TopOpen =
14 11 13 eqtrd X = TopOpen X =
15 10 14 eleq12d X = i X A i B i TopOpen X
16 6 15 mpbird X = i X A i B i TopOpen X
17 16 adantl φ X = i X A i B i TopOpen X
18 neqne ¬ X = X
19 18 adantl φ ¬ X = X
20 fveq2 i = j A i = A j
21 fveq2 i = j B i = B j
22 20 21 oveq12d i = j A i B i = A j B j
23 22 cbvixpv i X A i B i = j X A j B j
24 23 eleq2i f i X A i B i f j X A j B j
25 24 biimpi f i X A i B i f j X A j B j
26 25 adantl φ X f i X A i B i f j X A j B j
27 1 ad2antrr φ X f i X A i B i X Fin
28 24 27 sylan2br φ X f j X A j B j X Fin
29 simplr φ X f i X A i B i X
30 24 29 sylan2br φ X f j X A j B j X
31 2 ad2antrr φ X f i X A i B i A : X
32 24 31 sylan2br φ X f j X A j B j A : X
33 3 ad2antrr φ X f i X A i B i B : X
34 24 33 sylan2br φ X f j X A j B j B : X
35 simpr φ X f i X A i B i f i X A i B i
36 24 35 sylan2br φ X f j X A j B j f i X A i B i
37 eqid ran i X if B i f i f i A i B i f i f i A i = ran i X if B i f i f i A i B i f i f i A i
38 fveq2 j = i B j = B i
39 fveq2 j = i f j = f i
40 38 39 oveq12d j = i B j f j = B i f i
41 fveq2 j = i A j = A i
42 39 41 oveq12d j = i f j A j = f i A i
43 40 42 breq12d j = i B j f j f j A j B i f i f i A i
44 43 40 42 ifbieq12d j = i if B j f j f j A j B j f j f j A j = if B i f i f i A i B i f i f i A i
45 44 cbvmptv j X if B j f j f j A j B j f j f j A j = i X if B i f i f i A i B i f i f i A i
46 45 rneqi ran j X if B j f j f j A j B j f j f j A j = ran i X if B i f i f i A i B i f i f i A i
47 46 infeq1i sup ran j X if B j f j f j A j B j f j f j A j < = sup ran i X if B i f i f i A i B i f i f i A i <
48 eqid f ball a X , b X k X a k b k 2 sup ran j X if B j f j f j A j B j f j f j A j < = f ball a X , b X k X a k b k 2 sup ran j X if B j f j f j A j B j f j f j A j <
49 fveq1 a = g a k = g k
50 49 oveq1d a = g a k b k = g k b k
51 50 oveq1d a = g a k b k 2 = g k b k 2
52 51 sumeq2sdv a = g k X a k b k 2 = k X g k b k 2
53 52 fveq2d a = g k X a k b k 2 = k X g k b k 2
54 fveq1 b = h b k = h k
55 54 oveq2d b = h g k b k = g k h k
56 55 oveq1d b = h g k b k 2 = g k h k 2
57 56 sumeq2sdv b = h k X g k b k 2 = k X g k h k 2
58 57 fveq2d b = h k X g k b k 2 = k X g k h k 2
59 53 58 cbvmpov a X , b X k X a k b k 2 = g X , h X k X g k h k 2
60 28 30 32 34 36 37 47 48 59 ioorrnopnlem φ X f j X A j B j v TopOpen X f v v i X A i B i
61 26 60 syldan φ X f i X A i B i v TopOpen X f v v i X A i B i
62 61 ralrimiva φ X f i X A i B i v TopOpen X f v v i X A i B i
63 eqid TopOpen X = TopOpen X
64 63 rrxtop X Fin TopOpen X Top
65 1 64 syl φ TopOpen X Top
66 65 adantr φ X TopOpen X Top
67 eltop2 TopOpen X Top i X A i B i TopOpen X f i X A i B i v TopOpen X f v v i X A i B i
68 66 67 syl φ X i X A i B i TopOpen X f i X A i B i v TopOpen X f v v i X A i B i
69 62 68 mpbird φ X i X A i B i TopOpen X
70 19 69 syldan φ ¬ X = i X A i B i TopOpen X
71 17 70 pm2.61dan φ i X A i B i TopOpen X