| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioorrnopn.x |  |-  ( ph -> X e. Fin ) | 
						
							| 2 |  | ioorrnopn.a |  |-  ( ph -> A : X --> RR ) | 
						
							| 3 |  | ioorrnopn.b |  |-  ( ph -> B : X --> RR ) | 
						
							| 4 |  | p0ex |  |-  { (/) } e. _V | 
						
							| 5 | 4 | prid2 |  |-  { (/) } e. { (/) , { (/) } } | 
						
							| 6 | 5 | a1i |  |-  ( X = (/) -> { (/) } e. { (/) , { (/) } } ) | 
						
							| 7 |  | ixpeq1 |  |-  ( X = (/) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) = X_ i e. (/) ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 8 |  | ixp0x |  |-  X_ i e. (/) ( ( A ` i ) (,) ( B ` i ) ) = { (/) } | 
						
							| 9 | 8 | a1i |  |-  ( X = (/) -> X_ i e. (/) ( ( A ` i ) (,) ( B ` i ) ) = { (/) } ) | 
						
							| 10 | 7 9 | eqtrd |  |-  ( X = (/) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) = { (/) } ) | 
						
							| 11 |  | 2fveq3 |  |-  ( X = (/) -> ( TopOpen ` ( RR^ ` X ) ) = ( TopOpen ` ( RR^ ` (/) ) ) ) | 
						
							| 12 |  | rrxtopn0b |  |-  ( TopOpen ` ( RR^ ` (/) ) ) = { (/) , { (/) } } | 
						
							| 13 | 12 | a1i |  |-  ( X = (/) -> ( TopOpen ` ( RR^ ` (/) ) ) = { (/) , { (/) } } ) | 
						
							| 14 | 11 13 | eqtrd |  |-  ( X = (/) -> ( TopOpen ` ( RR^ ` X ) ) = { (/) , { (/) } } ) | 
						
							| 15 | 10 14 | eleq12d |  |-  ( X = (/) -> ( X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) <-> { (/) } e. { (/) , { (/) } } ) ) | 
						
							| 16 | 6 15 | mpbird |  |-  ( X = (/) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ X = (/) ) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) ) | 
						
							| 18 |  | neqne |  |-  ( -. X = (/) -> X =/= (/) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ph /\ -. X = (/) ) -> X =/= (/) ) | 
						
							| 20 |  | fveq2 |  |-  ( i = j -> ( A ` i ) = ( A ` j ) ) | 
						
							| 21 |  | fveq2 |  |-  ( i = j -> ( B ` i ) = ( B ` j ) ) | 
						
							| 22 | 20 21 | oveq12d |  |-  ( i = j -> ( ( A ` i ) (,) ( B ` i ) ) = ( ( A ` j ) (,) ( B ` j ) ) ) | 
						
							| 23 | 22 | cbvixpv |  |-  X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) = X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) | 
						
							| 24 | 23 | eleq2i |  |-  ( f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) <-> f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) | 
						
							| 25 | 24 | biimpi |  |-  ( f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) -> f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) -> f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) | 
						
							| 27 | 1 | ad2antrr |  |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) -> X e. Fin ) | 
						
							| 28 | 24 27 | sylan2br |  |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) -> X e. Fin ) | 
						
							| 29 |  | simplr |  |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) -> X =/= (/) ) | 
						
							| 30 | 24 29 | sylan2br |  |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) -> X =/= (/) ) | 
						
							| 31 | 2 | ad2antrr |  |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) -> A : X --> RR ) | 
						
							| 32 | 24 31 | sylan2br |  |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) -> A : X --> RR ) | 
						
							| 33 | 3 | ad2antrr |  |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) -> B : X --> RR ) | 
						
							| 34 | 24 33 | sylan2br |  |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) -> B : X --> RR ) | 
						
							| 35 |  | simpr |  |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) -> f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 36 | 24 35 | sylan2br |  |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) -> f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 37 |  | eqid |  |-  ran ( i e. X |-> if ( ( ( B ` i ) - ( f ` i ) ) <_ ( ( f ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( f ` i ) ) , ( ( f ` i ) - ( A ` i ) ) ) ) = ran ( i e. X |-> if ( ( ( B ` i ) - ( f ` i ) ) <_ ( ( f ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( f ` i ) ) , ( ( f ` i ) - ( A ` i ) ) ) ) | 
						
							| 38 |  | fveq2 |  |-  ( j = i -> ( B ` j ) = ( B ` i ) ) | 
						
							| 39 |  | fveq2 |  |-  ( j = i -> ( f ` j ) = ( f ` i ) ) | 
						
							| 40 | 38 39 | oveq12d |  |-  ( j = i -> ( ( B ` j ) - ( f ` j ) ) = ( ( B ` i ) - ( f ` i ) ) ) | 
						
							| 41 |  | fveq2 |  |-  ( j = i -> ( A ` j ) = ( A ` i ) ) | 
						
							| 42 | 39 41 | oveq12d |  |-  ( j = i -> ( ( f ` j ) - ( A ` j ) ) = ( ( f ` i ) - ( A ` i ) ) ) | 
						
							| 43 | 40 42 | breq12d |  |-  ( j = i -> ( ( ( B ` j ) - ( f ` j ) ) <_ ( ( f ` j ) - ( A ` j ) ) <-> ( ( B ` i ) - ( f ` i ) ) <_ ( ( f ` i ) - ( A ` i ) ) ) ) | 
						
							| 44 | 43 40 42 | ifbieq12d |  |-  ( j = i -> if ( ( ( B ` j ) - ( f ` j ) ) <_ ( ( f ` j ) - ( A ` j ) ) , ( ( B ` j ) - ( f ` j ) ) , ( ( f ` j ) - ( A ` j ) ) ) = if ( ( ( B ` i ) - ( f ` i ) ) <_ ( ( f ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( f ` i ) ) , ( ( f ` i ) - ( A ` i ) ) ) ) | 
						
							| 45 | 44 | cbvmptv |  |-  ( j e. X |-> if ( ( ( B ` j ) - ( f ` j ) ) <_ ( ( f ` j ) - ( A ` j ) ) , ( ( B ` j ) - ( f ` j ) ) , ( ( f ` j ) - ( A ` j ) ) ) ) = ( i e. X |-> if ( ( ( B ` i ) - ( f ` i ) ) <_ ( ( f ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( f ` i ) ) , ( ( f ` i ) - ( A ` i ) ) ) ) | 
						
							| 46 | 45 | rneqi |  |-  ran ( j e. X |-> if ( ( ( B ` j ) - ( f ` j ) ) <_ ( ( f ` j ) - ( A ` j ) ) , ( ( B ` j ) - ( f ` j ) ) , ( ( f ` j ) - ( A ` j ) ) ) ) = ran ( i e. X |-> if ( ( ( B ` i ) - ( f ` i ) ) <_ ( ( f ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( f ` i ) ) , ( ( f ` i ) - ( A ` i ) ) ) ) | 
						
							| 47 | 46 | infeq1i |  |-  inf ( ran ( j e. X |-> if ( ( ( B ` j ) - ( f ` j ) ) <_ ( ( f ` j ) - ( A ` j ) ) , ( ( B ` j ) - ( f ` j ) ) , ( ( f ` j ) - ( A ` j ) ) ) ) , RR , < ) = inf ( ran ( i e. X |-> if ( ( ( B ` i ) - ( f ` i ) ) <_ ( ( f ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( f ` i ) ) , ( ( f ` i ) - ( A ` i ) ) ) ) , RR , < ) | 
						
							| 48 |  | eqid |  |-  ( f ( ball ` ( a e. ( RR ^m X ) , b e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( a ` k ) - ( b ` k ) ) ^ 2 ) ) ) ) inf ( ran ( j e. X |-> if ( ( ( B ` j ) - ( f ` j ) ) <_ ( ( f ` j ) - ( A ` j ) ) , ( ( B ` j ) - ( f ` j ) ) , ( ( f ` j ) - ( A ` j ) ) ) ) , RR , < ) ) = ( f ( ball ` ( a e. ( RR ^m X ) , b e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( a ` k ) - ( b ` k ) ) ^ 2 ) ) ) ) inf ( ran ( j e. X |-> if ( ( ( B ` j ) - ( f ` j ) ) <_ ( ( f ` j ) - ( A ` j ) ) , ( ( B ` j ) - ( f ` j ) ) , ( ( f ` j ) - ( A ` j ) ) ) ) , RR , < ) ) | 
						
							| 49 |  | fveq1 |  |-  ( a = g -> ( a ` k ) = ( g ` k ) ) | 
						
							| 50 | 49 | oveq1d |  |-  ( a = g -> ( ( a ` k ) - ( b ` k ) ) = ( ( g ` k ) - ( b ` k ) ) ) | 
						
							| 51 | 50 | oveq1d |  |-  ( a = g -> ( ( ( a ` k ) - ( b ` k ) ) ^ 2 ) = ( ( ( g ` k ) - ( b ` k ) ) ^ 2 ) ) | 
						
							| 52 | 51 | sumeq2sdv |  |-  ( a = g -> sum_ k e. X ( ( ( a ` k ) - ( b ` k ) ) ^ 2 ) = sum_ k e. X ( ( ( g ` k ) - ( b ` k ) ) ^ 2 ) ) | 
						
							| 53 | 52 | fveq2d |  |-  ( a = g -> ( sqrt ` sum_ k e. X ( ( ( a ` k ) - ( b ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. X ( ( ( g ` k ) - ( b ` k ) ) ^ 2 ) ) ) | 
						
							| 54 |  | fveq1 |  |-  ( b = h -> ( b ` k ) = ( h ` k ) ) | 
						
							| 55 | 54 | oveq2d |  |-  ( b = h -> ( ( g ` k ) - ( b ` k ) ) = ( ( g ` k ) - ( h ` k ) ) ) | 
						
							| 56 | 55 | oveq1d |  |-  ( b = h -> ( ( ( g ` k ) - ( b ` k ) ) ^ 2 ) = ( ( ( g ` k ) - ( h ` k ) ) ^ 2 ) ) | 
						
							| 57 | 56 | sumeq2sdv |  |-  ( b = h -> sum_ k e. X ( ( ( g ` k ) - ( b ` k ) ) ^ 2 ) = sum_ k e. X ( ( ( g ` k ) - ( h ` k ) ) ^ 2 ) ) | 
						
							| 58 | 57 | fveq2d |  |-  ( b = h -> ( sqrt ` sum_ k e. X ( ( ( g ` k ) - ( b ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. X ( ( ( g ` k ) - ( h ` k ) ) ^ 2 ) ) ) | 
						
							| 59 | 53 58 | cbvmpov |  |-  ( a e. ( RR ^m X ) , b e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( a ` k ) - ( b ` k ) ) ^ 2 ) ) ) = ( g e. ( RR ^m X ) , h e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( g ` k ) - ( h ` k ) ) ^ 2 ) ) ) | 
						
							| 60 | 28 30 32 34 36 37 47 48 59 | ioorrnopnlem |  |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) -> E. v e. ( TopOpen ` ( RR^ ` X ) ) ( f e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) | 
						
							| 61 | 26 60 | syldan |  |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) -> E. v e. ( TopOpen ` ( RR^ ` X ) ) ( f e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) | 
						
							| 62 | 61 | ralrimiva |  |-  ( ( ph /\ X =/= (/) ) -> A. f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) E. v e. ( TopOpen ` ( RR^ ` X ) ) ( f e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) | 
						
							| 63 |  | eqid |  |-  ( TopOpen ` ( RR^ ` X ) ) = ( TopOpen ` ( RR^ ` X ) ) | 
						
							| 64 | 63 | rrxtop |  |-  ( X e. Fin -> ( TopOpen ` ( RR^ ` X ) ) e. Top ) | 
						
							| 65 | 1 64 | syl |  |-  ( ph -> ( TopOpen ` ( RR^ ` X ) ) e. Top ) | 
						
							| 66 | 65 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> ( TopOpen ` ( RR^ ` X ) ) e. Top ) | 
						
							| 67 |  | eltop2 |  |-  ( ( TopOpen ` ( RR^ ` X ) ) e. Top -> ( X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) <-> A. f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) E. v e. ( TopOpen ` ( RR^ ` X ) ) ( f e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) ) | 
						
							| 68 | 66 67 | syl |  |-  ( ( ph /\ X =/= (/) ) -> ( X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) <-> A. f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) E. v e. ( TopOpen ` ( RR^ ` X ) ) ( f e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) ) | 
						
							| 69 | 62 68 | mpbird |  |-  ( ( ph /\ X =/= (/) ) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) ) | 
						
							| 70 | 19 69 | syldan |  |-  ( ( ph /\ -. X = (/) ) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) ) | 
						
							| 71 | 17 70 | pm2.61dan |  |-  ( ph -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) ) |